Menu Close

lim-x-pi-tan-x-1-cos-x-




Question Number 160609 by cortano last updated on 03/Dec/21
     lim_(x→π)  (((tan x)/(1+cos x)))=?
limxπ(tanx1+cosx)=?
Answered by Ar Brandon last updated on 03/Dec/21
L=lim_(x→π) (((tanx)/(1+cosx))), u=x−π       =lim_(u→0) (((tan(u+π))/(1+cos(u+π))))=lim_(u→0) (((tanu)/(1−cosu)))       =lim_(u→0) (((u/(1−(u^2 /2)))/(1−(1−(u^2 /2)))))=lim_(u→0) (((2u)/(2−u^2 ))∙(2/u^2 ))       =lim_(u→0) ((4/(2u−u^3 )))→±∞
L=limxπ(tanx1+cosx),u=xπ=limu0(tan(u+π)1+cos(u+π))=limu0(tanu1cosu)=limu0(u1u221(1u22))=limu0(2u2u22u2)=limu0(42uu3)±
Answered by alephzero last updated on 03/Dec/21
     lim_(x→π)  (((tan x)/(1+cos x)))=?  To be honest, I′m in 6^(th)  grade.  But I can try  lim_(x→π ) ((tan x)/(1 + cos x)) = ?  tan π = 0  cos π = −1  1 + cos π = 0  This equation may look weird,  but let′s remember the rules of  arithmetic.  ∀n {n ∈ R ∣ (n/n) = 1}  Then,  lim_(x→π) ((tan x)/(1 + cos x)) = ((tan π)/(1 + cos π)) = (0/0) = 1  Or, if  lim_(x→0) (n/x) → ∞, where n ∈ R  then  lim_(x→π) ((tan x)/(1 + cos x)) = lim_(x→0) (0/x) = ∞  If this is false, don′t mind me,  I don′t know L′Ho^� pital′s rule,  and I′m only 12 years old.
limxπ(tanx1+cosx)=?Tobehonest,Imin6thgrade.ButIcantrylimxπtanx1+cosx=?tanπ=0cosπ=11+cosπ=0Thisequationmaylookweird,butletsremembertherulesofarithmetic.n{nRnn=1}Then,limxπtanx1+cosx=tanπ1+cosπ=00=1Or,iflimx0nx,wherenRthenlimxπtanx1+cosx=limx00x=Ifthisisfalse,dontmindme,IdontknowLHopital^srule,andImonly12yearsold.
Answered by tounghoungko last updated on 03/Dec/21
 lim_(x→π)  (((2sin (1/2)x cos (1/2)x)/(2cos^2 (1/2)x cos x))) =   lim_(x→π)  (((tan (1/2)x)/(cos x)))=−∞
limxπ(2sin12xcos12x2cos212xcosx)=limxπ(tan12xcosx)=
Answered by Mathspace last updated on 03/Dec/21
f(x)=((tanx)/(1+cosx))  changement x−π=t give  f(x)=f(t+π)=((tan(t+π))/(1+cos(t+π))) (t→0)  =((tant)/(1−cost))∼(t/(t^2 /2))=(2/t) →∞
f(x)=tanx1+cosxchangementxπ=tgivef(x)=f(t+π)=tan(t+π)1+cos(t+π)(t0)=tant1costtt22=2t

Leave a Reply

Your email address will not be published. Required fields are marked *