Question Number 160609 by cortano last updated on 03/Dec/21
$$\:\:\:\:\:\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\left(\frac{\mathrm{tan}\:\mathrm{x}}{\mathrm{1}+\mathrm{cos}\:\mathrm{x}}\right)=? \\ $$
Answered by Ar Brandon last updated on 03/Dec/21
$$\mathscr{L}=\underset{{x}\rightarrow\pi} {\mathrm{lim}}\left(\frac{\mathrm{tan}{x}}{\mathrm{1}+\mathrm{cos}{x}}\right),\:{u}={x}−\pi \\ $$$$\:\:\:\:\:=\underset{{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{tan}\left({u}+\pi\right)}{\mathrm{1}+\mathrm{cos}\left({u}+\pi\right)}\right)=\underset{{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{tan}{u}}{\mathrm{1}−\mathrm{cos}{u}}\right) \\ $$$$\:\:\:\:\:=\underset{{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\frac{{u}}{\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}}}{\mathrm{1}−\left(\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\right)}\right)=\underset{{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{2}{u}}{\mathrm{2}−{u}^{\mathrm{2}} }\centerdot\frac{\mathrm{2}}{{u}^{\mathrm{2}} }\right) \\ $$$$\:\:\:\:\:=\underset{{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{4}}{\mathrm{2}{u}−{u}^{\mathrm{3}} }\right)\rightarrow\pm\infty \\ $$
Answered by alephzero last updated on 03/Dec/21