Menu Close

lim-x-pi-x-pi-sinx-




Question Number 184891 by mathlove last updated on 13/Jan/23
lim_(x→π)  ((x−π)/(sinx))=?
limxπxπsinx=?
Answered by Mathspace last updated on 13/Jan/23
chang. x−π=t give  lim_(x→π) ((x−π)/(sinx))=lim_(t→0) (t/(sin(π+t)))  =−lim_(t→0) (t/(sint))=−1
chang.xπ=tgivelimxπxπsinx=limt0tsin(π+t)=limt0tsint=1
Answered by alephzero last updated on 13/Jan/23
lim_(x→π) ((x−π)/(sin x)) = lim_(x→π) (1/(cos x)) = (1/(−1)) = −1
limxπxπsinx=limxπ1cosx=11=1
Answered by TUN last updated on 14/Jan/23
=lim_(x→π)  ((−(π−x))/(sin(π−x)))  =−lim_(x→π)  ((π−x)/(sin(π−x)))  =−1
=limxπ(πx)sin(πx)=limxππxsin(πx)=1

Leave a Reply

Your email address will not be published. Required fields are marked *