Question Number 163650 by mathlove last updated on 09/Jan/22

Commented by Zaynal last updated on 09/Jan/22

Commented by mathlove last updated on 09/Jan/22

Answered by mr W last updated on 09/Jan/22
![generally: (a^(f(x)) )′=(e^(f(x) ln a) )′=a^(f(x)) (ln a)f′(x) (x^(f(x)) )′=(e^(f(x)ln x) )′=x^(f(x)) (((f(x))/x)+f′(x)ln x) lim_(x→a) ((x^a^x −a^x^a )/(x−a)) =lim_(x→a) (x^a^x −a^x^a )′ =lim_(x→a) {x^a^x ((a^x /x)+(ln x) (a^x )^′ )−a^x^a (ln a)(x^a )′} =lim_(x→a) {x^a^x [(a^x /x)+(ln x) (a^x )(ln a)]−a^x^a a(ln a)(x^(a−1) )} = {a^a^a [a^(a−1) +(ln a)^2 (a^a )]−a^a^a (ln a)(a^a )} = a^(a^a +a−1) {1+a(ln a)^2 −a(ln a)} = a^(a^a +a−1) [a (ln a)(ln a−1) +1] lim_(x→π) ((x^π^x −π^x^π )/(x−π))=π^(π^π +π−1) [π (ln π)(ln π−1) +1]](https://www.tinkutara.com/question/Q163672.png)
Commented by mathlove last updated on 09/Jan/22

Commented by Tawa11 last updated on 09/Jan/22
