Menu Close

lim-x-pi-x-pi-x-pi-x-pi-x-pi-




Question Number 163650 by mathlove last updated on 09/Jan/22
lim_(x→π) ((x^π^x  −π^x^π  )/(x−π))=?
limxπxπxπxπxπ=?
Commented by Zaynal last updated on 09/Jan/22
is′t not value of limit
istnotvalueoflimit
Commented by mathlove last updated on 09/Jan/22
way?
way?
Answered by mr W last updated on 09/Jan/22
generally:  (a^(f(x)) )′=(e^(f(x) ln a) )′=a^(f(x)) (ln a)f′(x)  (x^(f(x)) )′=(e^(f(x)ln x) )′=x^(f(x)) (((f(x))/x)+f′(x)ln x)    lim_(x→a) ((x^a^x  −a^x^a  )/(x−a))  =lim_(x→a)  (x^a^x  −a^x^a  )′  =lim_(x→a)  {x^a^x  ((a^x /x)+(ln x) (a^x )^′ )−a^x^a  (ln a)(x^a )′}  =lim_(x→a)  {x^a^x  [(a^x /x)+(ln x) (a^x )(ln a)]−a^x^a  a(ln a)(x^(a−1) )}  = {a^a^a  [a^(a−1) +(ln a)^2  (a^a )]−a^a^a  (ln a)(a^a )}  = a^(a^a +a−1) {1+a(ln a)^2  −a(ln a)}  = a^(a^a +a−1) [a (ln a)(ln a−1) +1]    lim_(x→π) ((x^π^x  −π^x^π  )/(x−π))=π^(π^π +π−1) [π (ln π)(ln π−1) +1]
generally:(af(x))=(ef(x)lna)=af(x)(lna)f(x)(xf(x))=(ef(x)lnx)=xf(x)(f(x)x+f(x)lnx)limxaxaxaxaxa=limxa(xaxaxa)=limxa{xax(axx+(lnx)(ax))axa(lna)(xa)}=limxa{xax[axx+(lnx)(ax)(lna)]axaa(lna)(xa1)}={aaa[aa1+(lna)2(aa)]aaa(lna)(aa)}=aaa+a1{1+a(lna)2a(lna)}=aaa+a1[a(lna)(lna1)+1]limxπxπxπxπxπ=πππ+π1[π(lnπ)(lnπ1)+1]
Commented by mathlove last updated on 09/Jan/22
thanks  mr  W
thanksmrW
Commented by Tawa11 last updated on 09/Jan/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *