Menu Close

lim-x-sec-2-x-sec-x-tan-x-




Question Number 188699 by cortano12 last updated on 05/Mar/23
   lim_(x→∞)  (sec^2 x−sec x tan x )=?
$$\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}−\mathrm{sec}\:\mathrm{x}\:\mathrm{tan}\:\mathrm{x}\:\right)=? \\ $$
Answered by mehdee42 last updated on 05/Mar/23
lim_(x→∞) (((1−sinx)/(cos^2 x)))=lim_(x→∞) ((1/(1+sinx)))=A  if  x=2nπ ⇒A=1 & if  x=2nπ+(π/2)⇒A=(1/2)  therefore  , there  is  no limit
$${li}\underset{{x}\rightarrow\infty} {{m}}\left(\frac{\mathrm{1}−{sinx}}{{cos}^{\mathrm{2}} {x}}\right)={li}\underset{{x}\rightarrow\infty} {{m}}\left(\frac{\mathrm{1}}{\mathrm{1}+{sinx}}\right)={A} \\ $$$${if}\:\:{x}=\mathrm{2}{n}\pi\:\Rightarrow{A}=\mathrm{1}\:\&\:{if}\:\:{x}=\mathrm{2}{n}\pi+\frac{\pi}{\mathrm{2}}\Rightarrow{A}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${therefore}\:\:,\:{there}\:\:{is}\:\:{no}\:{limit} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *