Menu Close

lim-x-sin-2-2-x-cos-1-x-1-sec-3-x-tan-2-3-x-




Question Number 120862 by bemath last updated on 03/Nov/20
 lim_(x→∞)  ((sin^2 ((2/x))−cos ((1/x))+1)/(sec ((3/x)) tan^2 ((3/x)))) ?
$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{sin}\:^{\mathrm{2}} \left(\frac{\mathrm{2}}{\mathrm{x}}\right)−\mathrm{cos}\:\left(\frac{\mathrm{1}}{\mathrm{x}}\right)+\mathrm{1}}{\mathrm{sec}\:\left(\frac{\mathrm{3}}{\mathrm{x}}\right)\:\mathrm{tan}\:^{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{x}}\right)}\:? \\ $$
Commented by liberty last updated on 03/Nov/20
take X=(1/x) then  lim_(X→0)  ((sin^2 2X−cos X+1)/(sec 3X. tan^2 3X)) =    lim_(X→0)  cos^3 3X × lim_(X→0)  ((sin^2 2X+2sin^2 (X/2))/(sin^2 3X))  = 1 × ((4+(1/2))/9) = (1/2)
$$\mathrm{take}\:\mathrm{X}=\frac{\mathrm{1}}{\mathrm{x}}\:\mathrm{then}\:\:\underset{\mathrm{X}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:^{\mathrm{2}} \mathrm{2X}−\mathrm{cos}\:\mathrm{X}+\mathrm{1}}{\mathrm{sec}\:\mathrm{3X}.\:\mathrm{tan}\:^{\mathrm{2}} \mathrm{3X}}\:=\: \\ $$$$\:\underset{\mathrm{X}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{cos}\:^{\mathrm{3}} \mathrm{3X}\:×\:\underset{\mathrm{X}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:^{\mathrm{2}} \mathrm{2X}+\mathrm{2sin}\:^{\mathrm{2}} \left(\mathrm{X}/\mathrm{2}\right)}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{3X}} \\ $$$$=\:\mathrm{1}\:×\:\frac{\mathrm{4}+\frac{\mathrm{1}}{\mathrm{2}}}{\mathrm{9}}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Answered by Dwaipayan Shikari last updated on 03/Nov/20
lim_(x→∞) ((sin^2 ((2/x))−cos((1/x))+1)/((sin^2 ((3/x)))/(cos^3 ((3/x)))))  =((((2/x))^2 −1+(1/(2x^2 ))+1)/(sin^2 (3/x)))=(((1/x^2 )(4+(1/2)))/(((3/x))^2 ))=(1/2)
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{sin}^{\mathrm{2}} \left(\frac{\mathrm{2}}{{x}}\right)−{cos}\left(\frac{\mathrm{1}}{{x}}\right)+\mathrm{1}}{\frac{{sin}^{\mathrm{2}} \left(\frac{\mathrm{3}}{{x}}\right)}{{cos}^{\mathrm{3}} \left(\frac{\mathrm{3}}{{x}}\right)}} \\ $$$$=\frac{\left(\frac{\mathrm{2}}{{x}}\right)^{\mathrm{2}} −\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }+\mathrm{1}}{{sin}^{\mathrm{2}} \frac{\mathrm{3}}{{x}}}=\frac{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\left(\mathrm{4}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{\left(\frac{\mathrm{3}}{{x}}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *