Menu Close

lim-x-sin-pi-2n-sin-2pi-2n-sin-3pi-2n-sin-n-1-pi-n-1-n-




Question Number 163658 by mathlove last updated on 09/Jan/22
lim_(x→∞) ((sin (π/(2n))×sin ((2π)/(2n))×sin ((3π)/(2n))....×sin (((n−1)π)/n)))^(1/n) =?
limxsinπ2n×sin2π2n×sin3π2n.×sin(n1)πnn=?
Answered by Ar Brandon last updated on 09/Jan/22
A=lim_(n→∞) ((sin (π/(2n))×sin ((2π)/(2n))×sin ((3π)/(2n))....×sin (((n−1)π)/n)))^(1/n)   lnA=lim_(n→∞) (1/n)ln(Π_(k=1) ^(n−1) sin(((kπ)/(2n))))=lim_(n→∞) (1/n)Σ_(k=1) ^(n−1) ln(sin(((kπ)/(2n))))           =∫_0 ^1 ln(sin((π/2)x))dx=(2/π)∫_0 ^(π/2) ln(sinu)du            =(2/π)(−((πln2)/2))=−ln2 ⇒A=e^(ln((1/2))) =(1/2)
A=limnsinπ2n×sin2π2n×sin3π2n.×sin(n1)πnnlnA=limn1nln(n1k=1sin(kπ2n))=limn1nn1k=1ln(sin(kπ2n))=01ln(sin(π2x))dx=2π0π2ln(sinu)du=2π(πln22)=ln2A=eln(12)=12
Answered by qaz last updated on 09/Jan/22
lim_(n→∞) ((sin (π/(2n))∙sin ((2π)/(2n))∙...∙sin (((n−1)π)/n)))^(1/n)   =explim_(n→∞) (1/n)Σ_(k=1) ^(2n−2) lnsin ((kπ)/(2n))  =e^(∫_0 ^2 lnsin (π/2)xdx)   =(1/4)
limnsinπ2nsin2π2nsin(n1)πnn=explimn1n2n2k=1lnsinkπ2n=e02lnsinπ2xdx=14

Leave a Reply

Your email address will not be published. Required fields are marked *