lim-x-sin-pi-2n-sin-2pi-2n-sin-3pi-2n-sin-n-1-pi-n-1-n- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 163658 by mathlove last updated on 09/Jan/22 limx→∞sinπ2n×sin2π2n×sin3π2n….×sin(n−1)πnn=? Answered by Ar Brandon last updated on 09/Jan/22 A=limn→∞sinπ2n×sin2π2n×sin3π2n….×sin(n−1)πnnlnA=limn→∞1nln(∏n−1k=1sin(kπ2n))=limn→∞1n∑n−1k=1ln(sin(kπ2n))=∫01ln(sin(π2x))dx=2π∫0π2ln(sinu)du=2π(−πln22)=−ln2⇒A=eln(12)=12 Answered by qaz last updated on 09/Jan/22 limn→∞sinπ2n⋅sin2π2n⋅…⋅sin(n−1)πnn=explimn→∞1n∑2n−2k=1lnsinkπ2n=e∫02lnsinπ2xdx=14 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-32584Next Next post: lim-x-0-1-x-1-x-e-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.