Question Number 158204 by tounghoungko last updated on 01/Nov/21
$$\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{sin}\:\sqrt{{x}+\mathrm{1}}−\mathrm{sin}\:\sqrt{{x}\:}\right)\:=? \\ $$
Answered by ajfour last updated on 01/Nov/21
$${L}=\underset{{x}\rightarrow\infty} {\mathrm{lim}2cos}\:\left(\frac{\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}}{\mathrm{2}}\right)\mathrm{sin}\:\left(\frac{\sqrt{{x}+\mathrm{1}}−\sqrt{{x}}}{\mathrm{2}}\right) \\ $$$$=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}2cos}\:\left(\frac{\frac{\mathrm{1}}{\:\sqrt{{h}}}+\frac{\sqrt{{h}+\mathrm{1}}}{\:\sqrt{{h}}}}{\mathrm{2}}\right)\mathrm{sin}\:\left(\frac{\frac{\sqrt{{h}+\mathrm{1}}−\mathrm{1}}{\:\sqrt{{h}}}}{\mathrm{2}}\right) \\ $$$$=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}2cos}\:\left(\frac{\mathrm{2}+{h}/\mathrm{2}}{\:\mathrm{2}\sqrt{{h}}}\right)\mathrm{sin}\:\left(\frac{\sqrt{{h}}}{\mathrm{4}}\right) \\ $$$${L}=\frac{\mathrm{1}}{\mathrm{2}}\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\sqrt{{h}}\mathrm{cos}\:\left(\frac{\mathrm{1}}{\:\sqrt{{h}}}\right) \\ $$$$=\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\frac{\left(\frac{\mathrm{1}}{\mathrm{2}\sqrt{{h}}}\right)}{−\frac{\mathrm{1}}{\mathrm{2}{h}\sqrt{{h}}}\:\mathrm{sec}\:\left(\frac{\mathrm{1}}{\:\sqrt{{h}}}\right)\mathrm{tan}\:\left(\frac{\mathrm{1}}{\:\sqrt{{h}}}\right)} \\ $$$${L}=−\frac{{L}^{\mathrm{2}} }{\mathrm{2}}\frac{\mathrm{1}}{\mathrm{sin}\:\left(\frac{\mathrm{1}}{\:\sqrt{{h}}}\right)}=−\frac{{L}^{\mathrm{2}} }{\mathrm{2}\sqrt{\mathrm{1}−\frac{\mathrm{4}{L}^{\mathrm{2}} }{{h}}}} \\ $$$$\Rightarrow\:\:\:{L}=\mathrm{0}\:\:. \\ $$
Answered by cortano last updated on 01/Nov/21