Menu Close

lim-x-sin-x-2-1-sin-x-2-1-




Question Number 160937 by blackmamba last updated on 09/Dec/21
   lim_(x→∞)  ( sin (√(x^2 +1))−sin (√(x^2 −1)) )=?
$$\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\:\mathrm{sin}\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−\mathrm{sin}\:\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\:\right)=? \\ $$
Answered by aleks041103 last updated on 14/Dec/21
sin(a)−sin(b)=  =sin(((a+b)/2)+((a−b)/2))−sin(((a+b)/2)−((a−b)/2))=  =sin(v+u)−sin(v−u)=  =sin(v)cos(u)+sin(u)cos(v)−(sin(v)cos(u)−sin(u)cos(v))=  =2sin(u)cos(v)=  =2sin(((a−b)/2))cos(((a+b)/2))  ⇒ lim_(x→∞)  ( sin (√(x^2 +1))−sin (√(x^2 −1)) )=  =2lim_(x→∞) sin((((√(x^2 +1))−(√(x^2 −1)))/2))cos((((√(x^2 +1))+(√(x^2 −1)))/2))=  =2lim_(x→∞) sin(((x^2 +1−(x^2 −1))/(2((√(x^2 +1))+(√(x^2 −1))))))cos((((√(x^2 +1))+(√(x^2 −1)))/2))=  =2lim_(x→∞) sin((1/(((√(x^2 +1))+(√(x^2 −1))))))cos((((√(x^2 +1))+(√(x^2 −1)))/2))  But  lim_(x→∞) sin((1/(((√(x^2 +1))+(√(x^2 −1))))))=  =sin(lim_(x→∞) (1/(((√(x^2 +1))+(√(x^2 −1))))))=sin(0)=0  and cos((((√(x^2 +1))+(√(x^2 −1)))/2))∈[−1,1], i.e. is finite  Then  2lim_(x→∞) sin((1/(((√(x^2 +1))+(√(x^2 −1))))))cos((((√(x^2 +1))+(√(x^2 −1)))/2))=  =2lim_(x→∞) (0)×(finite)=2×0=0  ⇒Ans.=0
$${sin}\left({a}\right)−{sin}\left({b}\right)= \\ $$$$={sin}\left(\frac{{a}+{b}}{\mathrm{2}}+\frac{{a}−{b}}{\mathrm{2}}\right)−{sin}\left(\frac{{a}+{b}}{\mathrm{2}}−\frac{{a}−{b}}{\mathrm{2}}\right)= \\ $$$$={sin}\left({v}+{u}\right)−{sin}\left({v}−{u}\right)= \\ $$$$={sin}\left({v}\right){cos}\left({u}\right)+{sin}\left({u}\right){cos}\left({v}\right)−\left({sin}\left({v}\right){cos}\left({u}\right)−{sin}\left({u}\right){cos}\left({v}\right)\right)= \\ $$$$=\mathrm{2}{sin}\left({u}\right){cos}\left({v}\right)= \\ $$$$=\mathrm{2}{sin}\left(\frac{{a}−{b}}{\mathrm{2}}\right){cos}\left(\frac{{a}+{b}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\:\mathrm{sin}\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−\mathrm{sin}\:\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\:\right)= \\ $$$$=\mathrm{2}\underset{{x}\rightarrow\infty} {{lim}sin}\left(\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{\mathrm{2}}\right){cos}\left(\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{\mathrm{2}}\right)= \\ $$$$=\mathrm{2}\underset{{x}\rightarrow\infty} {{lim}sin}\left(\frac{{x}^{\mathrm{2}} +\mathrm{1}−\left({x}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{2}\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)}\right){cos}\left(\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{\mathrm{2}}\right)= \\ $$$$=\mathrm{2}\underset{{x}\rightarrow\infty} {{lim}sin}\left(\frac{\mathrm{1}}{\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)}\right){cos}\left(\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{\mathrm{2}}\right) \\ $$$${But} \\ $$$$\underset{{x}\rightarrow\infty} {{lim}sin}\left(\frac{\mathrm{1}}{\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)}\right)= \\ $$$$={sin}\left(\underset{{x}\rightarrow\infty} {{lim}}\frac{\mathrm{1}}{\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)}\right)={sin}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${and}\:{cos}\left(\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{\mathrm{2}}\right)\in\left[−\mathrm{1},\mathrm{1}\right],\:{i}.{e}.\:{is}\:{finite} \\ $$$${Then} \\ $$$$\mathrm{2}\underset{{x}\rightarrow\infty} {{lim}sin}\left(\frac{\mathrm{1}}{\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)}\right){cos}\left(\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{\mathrm{2}}\right)= \\ $$$$=\mathrm{2}\underset{{x}\rightarrow\infty} {{lim}}\left(\mathrm{0}\right)×\left({finite}\right)=\mathrm{2}×\mathrm{0}=\mathrm{0} \\ $$$$\Rightarrow{Ans}.=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *