Menu Close

lim-x-sinx-x-3-2sinx-




Question Number 158175 by mathocean1 last updated on 31/Oct/21
lim_(x→+∞ ) ((sinx+x)/(3+2sinx))=?
limx+sinx+x3+2sinx=?
Commented by cortano last updated on 01/Nov/21
 lim_(x→∞)  ((sin x+x)/(3+2sin x))=lim_(x→∞)  ((((sin x)/x)+1)/((3/x)+((2sin x)/x)))  = ((0+1)/(0+0)) = ∞
limxsinx+x3+2sinx=limxsinxx+13x+2sinxx=0+10+0=
Answered by puissant last updated on 31/Oct/21
u=(1/x) ; u→0 quand x→+∞  ⇒ L =lim_(x→+∞) ((sinx+x)/(3+2sinx)) = lim_(u→0) ((sin((1/u))+(1/u))/(3+2sin((1/u))))  =lim_(u→0) (((1/u)+(1/u))/(3+(2/u))) (en utilisant le devellopement  limite^�  du sinus a l′ordre 1..  ⇒ L = lim_(u→0) ((2/u)/((3u+2)/u)) = lim_(u→0) (2/(3u+2)) = 1
u=1x;u0quandx+L=limx+sinx+x3+2sinx=limu0sin(1u)+1u3+2sin(1u)=limu01u+1u3+2u(enutilisantledevellopementlimite´dusinusalordre1..L=limu02u3u+2u=limu023u+2=1

Leave a Reply

Your email address will not be published. Required fields are marked *