Question Number 83690 by jagoll last updated on 05/Mar/20
$$\underset{{x}\rightarrow\infty\:} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\left(\frac{\pi{x}+\mathrm{1}}{\mathrm{2}{x}+\mathrm{2}}\right)}{{x}+\mathrm{1}}\:=\:? \\ $$
Commented by mathmax by abdo last updated on 05/Mar/20
$${let}\:{f}\left({x}\right)=\frac{{tan}\left(\frac{\pi{x}+\mathrm{1}}{\mathrm{2}{x}+\mathrm{2}}\right)}{{x}+\mathrm{1}}\:\Rightarrow{f}\left({x}\right)=\frac{{tan}\left(\frac{\pi}{\mathrm{2}}×\frac{{x}+\frac{\mathrm{1}}{\pi}}{{x}+\mathrm{1}}\right)}{{x}+\mathrm{1}} \\ $$$$=\frac{{tan}\left(\frac{\pi}{\mathrm{2}}×\left(\frac{{x}+\mathrm{1}\:+\frac{\mathrm{1}}{\pi}−\mathrm{1}}{{x}+\mathrm{1}}\right)\right)}{{x}+\mathrm{1}}\:=\frac{{tan}\left(\frac{\pi}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}−\pi}{\pi\left({x}+\mathrm{1}\right)}\right)\right.}{{x}+\mathrm{1}} \\ $$$$=\frac{{tan}\left(\frac{\pi}{\mathrm{2}}+\frac{\left(\mathrm{1}−\pi\right)}{\mathrm{2}\left({x}+\mathrm{1}\right)}\right)}{{x}+\mathrm{1}}\:=−\frac{\mathrm{1}}{{tan}\left(\frac{\mathrm{1}−\pi}{\mathrm{2}\left({x}+\mathrm{1}\right)}\right)\left({x}+\mathrm{1}\right)} \\ $$$$\Rightarrow{f}\left({x}\right)\sim−\frac{\mathrm{1}}{\frac{\mathrm{1}−\pi}{\mathrm{2}\left({x}+\mathrm{1}\right)}×\left({x}+\mathrm{1}\right)}\:=\frac{−\mathrm{2}}{\mathrm{1}−\pi}\:=\frac{\mathrm{2}}{\pi−\mathrm{1}}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow+\infty} {f}\left({x}\right)\:=\frac{\mathrm{2}}{\pi−\mathrm{1}} \\ $$
Answered by john santu last updated on 05/Mar/20
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{{x}+\mathrm{1}}\:\mathrm{cot}\:\left(\frac{\pi}{\mathrm{2}}−\frac{\pi{x}+\mathrm{1}}{\mathrm{2}{x}+\mathrm{2}}\right)\:= \\ $$$$\underset{{x}\rightarrow\infty\:} {\mathrm{lim}}\:\frac{\mathrm{cot}\:\left(\frac{\mathrm{2}\left(\pi−\mathrm{1}\right)}{\mathrm{4}\left({x}+\mathrm{1}\right)}\right)}{{x}+\mathrm{1}}\:=\: \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)\mathrm{tan}\:\left(\frac{\pi−\mathrm{1}}{\mathrm{2}\left({x}+\mathrm{1}\right)}\right)}\:×\:\frac{\left(\frac{\pi−\mathrm{1}}{\mathrm{2}\left({x}+\mathrm{1}\right)}\right)}{\left(\frac{\pi−\mathrm{1}}{\mathrm{2}\left({x}+\mathrm{1}\right)}\right)}\:= \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{2}\left({x}+\mathrm{1}\right)}{\left(\pi−\mathrm{1}\right)\left({x}+\mathrm{1}\right)}\:=\:\frac{\mathrm{2}}{\pi−\mathrm{1}}\:\Leftarrow\:\mathrm{the}\:\mathrm{answer} \\ $$
Commented by jagoll last updated on 05/Mar/20
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{mister} \\ $$