Menu Close

lim-x-x-2-1-x-2-1-1-5-with-solution-




Question Number 186617 by mustafazaheen last updated on 07/Feb/23
lim_(x→∞) ((x^2 −1)/( (((x^2 −1)))^(1/5) ))=?        with solution
$$\underset{{x}\rightarrow\infty} {{lim}}\frac{{x}^{\mathrm{2}} −\mathrm{1}}{\:\sqrt[{\mathrm{5}}]{\left({x}^{\mathrm{2}} −\mathrm{1}\right)}}=?\:\:\:\:\:\:\:\:{with}\:{solution} \\ $$
Commented by aba last updated on 07/Feb/23
  =lim_(x→∞) ((((x^2 −1)^5 )/((x^2 −1))))^(1/5) =lim_(x→∞) (((x^2 −1)^4 ))^(1/5) =∞
$$ \\ $$$$=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\sqrt[{\mathrm{5}}]{\frac{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{5}} }{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)}}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\sqrt[{\mathrm{5}}]{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{4}} }=\infty \\ $$
Commented by aba last updated on 07/Feb/23
=lim_(x→∞) ((1−(1/x^2 ))/( (((1/x^8 )−(1/x^(10) )))^(1/5) ))=(1/0)=∞
$$=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }}{\:\sqrt[{\mathrm{5}}]{\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{8}} }−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{10}} }}}=\frac{\mathrm{1}}{\mathrm{0}}=\infty \\ $$
Answered by cortano1 last updated on 07/Feb/23
 lim_(x→∞)  (((x^2 −1)^4 ))^(1/5)  = ∞
$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt[{\mathrm{5}}]{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{4}} }\:=\:\infty \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *