Menu Close

lim-x-x-2-3x-x-2-x-x-




Question Number 167085 by mathlove last updated on 06/Mar/22
lim_(x→∞) ((√(x^2 +3x))−(√(x^2 +x)))^x =?
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{3}{x}}−\sqrt{{x}^{\mathrm{2}} +{x}}\right)^{{x}} =? \\ $$
Commented by cortano1 last updated on 06/Mar/22
 L=e^(lim_(x→∞) ((√(x^2 +3x))−(√(x^2 +x))−1).x)   L=e^(lim_(x→∞) ((x+(3/2))−(x+(1/2))−1).x)   L=e^0 = 1
$$\:\mathrm{L}=\mathrm{e}^{\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{3x}}−\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{x}}−\mathrm{1}\right).\mathrm{x}} \\ $$$$\mathrm{L}=\mathrm{e}^{\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\left(\mathrm{x}+\frac{\mathrm{3}}{\mathrm{2}}\right)−\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}\right)−\mathrm{1}\right).\mathrm{x}} \\ $$$$\mathrm{L}=\mathrm{e}^{\mathrm{0}} =\:\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *