Question Number 59393 by Mikael_Marshall last updated on 09/May/19
$$\underset{{x}\rightarrow+\infty} {{lim}}\:\left(\frac{{x}^{\mathrm{2}} −\mathrm{4}}{{x}^{\mathrm{2}} +\mathrm{2}}\overset{\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}+\mathrm{1}}} {\right)} \\ $$$${pls}. \\ $$
Commented by maxmathsup by imad last updated on 10/May/19
$${let}\:{A}\left({x}\right)\:=\left(\frac{{x}^{\mathrm{2}} −\mathrm{4}}{{x}^{\mathrm{2}} \:+\mathrm{2}}\right)^{\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}+\mathrm{1}}} \:\Rightarrow{ln}\left({A}\left({x}\right)\right)\:=\left(\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} \:+\mathrm{2}}\right){ln}\left(\frac{{x}^{\mathrm{2}} −\mathrm{4}}{{x}^{\mathrm{2}} +\mathrm{2}}\right)\:\:{but} \\ $$$${ln}\left(\frac{{x}^{\mathrm{2}} −\mathrm{4}}{{x}^{\mathrm{2}} \:+\mathrm{2}}\right)\:={ln}\left(\frac{{x}^{\mathrm{2}} +\mathrm{2}−\mathrm{6}}{{x}^{\mathrm{2}} +\mathrm{2}}\right)={ln}\left(\mathrm{1}−\frac{\mathrm{6}}{{x}^{\mathrm{2}} +\mathrm{2}}\right)\sim\frac{−\mathrm{6}}{{x}^{\mathrm{2}} \:+\mathrm{2}}\left({x}\rightarrow+\infty\right)\:\:\left({because}\:{ln}\left(\mathrm{1}+{u}\right)\sim{u}\:\left({u}\rightarrow\mathrm{0}\right)\right. \\ $$$$\Rightarrow{ln}\left({A}\left({x}\right)\right)\sim\frac{−\mathrm{6}\left({x}^{\mathrm{2}} −\mathrm{1}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{2}\right)^{\mathrm{2}} }\:\rightarrow\mathrm{0}\:\:\left({x}\rightarrow+\infty\right)\:\Rightarrow{lim}_{{x}\rightarrow+\infty} {A}\left({x}\right)\:=\mathrm{1}\:. \\ $$
Commented by Mikael_Marshall last updated on 10/May/19
$${thank}\:{you}\:{Sir} \\ $$
Commented by mr W last updated on 10/May/19
$${please}\:{check}\:{sir}: \\ $$$${let}\:{A}\left({x}\right)\:=\left(\frac{{x}^{\mathrm{2}} −\mathrm{4}}{{x}^{\mathrm{2}} \:+\mathrm{2}}\right)^{\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}+\mathrm{1}}} \:\Rightarrow{ln}\left({A}\left({x}\right)\right)\:=\left(\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}\:+\mathrm{1}}\right){ln}\left(\frac{{x}^{\mathrm{2}} −\mathrm{4}}{{x}^{\mathrm{2}} +\mathrm{2}}\right)\: \\ $$$$ \\ $$
Commented by kaivan.ahmadi last updated on 10/May/19
$${if}\:{limf}\left({x}\right)^{{g}\left({x}\right)} =\mathrm{1}^{\infty} \:{we}\:{can}\:{use} \\ $$$${lim}\:{e}^{{g}\left({x}\right)\left({f}\left({x}\right)−\mathrm{1}\right)} \\ $$$${so} \\ $$$${lim}_{{x}\rightarrow+\infty} \:{e}^{\left(\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}+\mathrm{1}}\right)\left(\frac{{x}^{\mathrm{2}} −\mathrm{4}}{{x}^{\mathrm{2}} +\mathrm{2}}−\mathrm{1}\right)} ={lim}_{{x}\rightarrow+\infty} \:{e}^{\left(\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}+\mathrm{1}}\right)\left(\frac{−\mathrm{6}}{{x}^{\mathrm{2}} +\mathrm{2}}\right)} = \\ $$$${e}^{\mathrm{0}} =\mathrm{1} \\ $$
Commented by Mikael_Marshall last updated on 10/May/19
$${thanks}\:{Sir} \\ $$
Commented by maxmathsup by imad last updated on 10/May/19
$${yes}\:{sir}\:{i}\:{have}\:{commited}\:{a}\:{error}\:{let}\:{rectify}\:\:{ln}\left({A}\left({x}\right)\right)=\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}+\mathrm{1}}{ln}\left(\frac{{x}^{\mathrm{2}} −\mathrm{4}}{{x}^{\mathrm{2}} \:+\mathrm{2}}\right)\:\Rightarrow \\ $$$${ln}\left({A}\left({x}\right)\right)\:\sim\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}+\mathrm{1}}.\frac{−\mathrm{6}}{{x}^{\mathrm{2}} +\mathrm{2}}\:\:=\frac{−\mathrm{6}{x}^{\mathrm{2}} +\mathrm{6}}{\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{2}\right)}\:\rightarrow\mathrm{0}\left({x}\rightarrow+\infty\right)\:\Rightarrow{lim}_{{x}\rightarrow+\infty} {A}\left({x}\right)=\mathrm{1}. \\ $$$$ \\ $$
Answered by malwaan last updated on 10/May/19
$$\underset{{x}\rightarrow\infty} {{lim}}\left(\frac{{x}^{\mathrm{2}} +\mathrm{2}−\mathrm{6}}{{x}^{\mathrm{2}} +\mathrm{2}}\right)^{\frac{\left({x}+\mathrm{1}\right)\left({x}−\mathrm{1}\right)}{{x}+\mathrm{1}}} \\ $$$$=\underset{{x}\rightarrow\infty} {{lim}}\left(\mathrm{1}−\frac{\mathrm{6}}{{x}^{\mathrm{2}} +\mathrm{2}}\right)^{{x}−\mathrm{1}} \\ $$$$=\underset{{x}\rightarrow\infty} {{lim}}\left(\mathrm{1}+\frac{−\mathrm{6}}{{x}^{\mathrm{2}} +\mathrm{2}}\right)^{\left(\frac{{x}^{\mathrm{2}} +\mathrm{2}}{−\mathrm{6}}\right)\left({x}−\mathrm{1}\right)\left(\frac{−\mathrm{6}}{{x}^{\mathrm{2}} +\mathrm{2}_{} }\right)} \\ $$$$=\underset{{x}\rightarrow\infty} {{lim}}\left[\left(\mathrm{1}+\frac{−\mathrm{6}}{{x}^{\mathrm{2}} +\mathrm{2}}\right)^{\left(\frac{{x}^{\mathrm{2}} +\mathrm{2}}{−\mathrm{6}}\right)} \right]^{\frac{−\mathrm{6}\left({x}−\mathrm{1}\right)}{{x}^{\mathrm{2}} +\mathrm{2}}} \\ $$$$=\left[{e}^{−\mathrm{6}} \right]^{\mathrm{0}} \:=\mathrm{1} \\ $$
Commented by Mikael_Marshall last updated on 10/May/19
$${thanks}\:{Sir} \\ $$