Menu Close

lim-x-x-2-e-2x-




Question Number 95133 by john santu last updated on 23/May/20
lim_(x→∞)  (x^2 .e^( −2x) ) = ?
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{x}^{\mathrm{2}} .\mathrm{e}^{\:−\mathrm{2x}} \right)\:=\:? \\ $$
Answered by bobhans last updated on 23/May/20
lim_(x→∞)  (x^2 /e^(2x) ) = lim_(x→∞)  ((2x)/(2e^(2x) )) = lim_(x→∞) (x/e^(2x) ) = lim_(x→∞)  (1/(2e^(2x) )) = 0
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{e}^{\mathrm{2x}} }\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{2x}}{\mathrm{2e}^{\mathrm{2x}} }\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{x}}{\mathrm{e}^{\mathrm{2x}} }\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{2e}^{\mathrm{2x}} }\:=\:\mathrm{0} \\ $$
Commented by john santu last updated on 23/May/20
������

Leave a Reply

Your email address will not be published. Required fields are marked *