Menu Close

lim-x-x-2-e-x-




Question Number 33073 by NECx last updated on 10/Apr/18
lim_(x→∞)  x^2 e^(−x)
limxx2ex
Commented by abdo imad last updated on 10/Apr/18
for all plynome p(x) not o wehave lim_(x→+∞) p(x)e^(−αx) =0  with α>0  we say that e^(−αx)  defeat p(x) at +∞ .
forallplynomep(x)notowehavelimx+p(x)eαx=0withα>0wesaythateαxdefeatp(x)at+.
Answered by MJS last updated on 10/Apr/18
lim_(x→∞)  (x^p /q^x )=0 ∀q>1  f(x)=((log_(10)  ((x^p /q^x )))/x)=((plog_(10)  x)/x)−log_(10)  q  lim_(x→∞)  f(x)=−log_(10)  q ⇒  ⇒ lim_(x→∞)  xf(x)=−∞ ⇒  ⇒ lim_(x→∞)  10^(xf(x)) =lim_(x→∞)  (x^p /q^x )=0
limxxpqx=0q>1f(x)=log10(xpqx)x=plog10xxlog10qlimxf(x)=log10qlimxxf(x)=limx10xf(x)=limxxpqx=0
Answered by Joel578 last updated on 10/Apr/18
L = lim_(x→∞)  (x^2 /e^x )       = lim_(x→∞)  ((2x)/e^x )   (L′Hospital)       = lim_(x→∞)  (2/e^x )       = (2/∞) = 0
L=limxx2ex=limx2xex(LHospital)=limx2ex=2=0

Leave a Reply

Your email address will not be published. Required fields are marked *