Menu Close

lim-x-x-2-x-1-x-pls-solve-this-




Question Number 54409 by pooja24 last updated on 03/Feb/19
lim_(x→∞) (√((x^2 +x+1)))−x=?  pls solve this
limx(x2+x+1)x=?plssolvethis
Commented by maxmathsup by imad last updated on 03/Feb/19
we have (√(x^2  +x+1))=∣x∣(√(1+(1/x)+(1/x^2 )))∼1+(1/2)((1/x) +(1/x^2 )) (x→∞) ⇒  (√(x^2 +x+1))−x  ∼ ∣x∣{1+(1/(2x)) +(1/(2x^2 ))}−x ⇒  lim_(x→+∞) (√(x^2 +x+1)) −x =lim_(x→+∞) x{1+(1/(2x)) +(1/(2x^2 ))}−x  =lim_(x→+∞) ((1/2) +(1/(2x))) =(1/2)  lim_(x→−∞) (√(x^2 +x+1))−x =lim_(x→−∞) −x{1+(1/(2x)) +(1/(2x^2 ))}−x  =lim_(x→−∞)    −2x−(1/2) −(1/(2x)) =+∞ .
wehavex2+x+1=∣x1+1x+1x21+12(1x+1x2)(x)x2+x+1xx{1+12x+12x2}xlimx+x2+x+1x=limx+x{1+12x+12x2}x=limx+(12+12x)=12limxx2+x+1x=limxx{1+12x+12x2}x=limx2x1212x=+.
Answered by kaivan.ahmadi last updated on 03/Feb/19
×(((√(x^2 +x+1))+x)/( (√(x^2 +x+1))+1))=lim_(x→+∞) ((x+1)/( (√(x^2 +x+1))+x))≈lim_(x→+∞) (x/(2x))=(1/2)    or    ≈lim_(x→∞) ∣x+(1/2)∣−x=(1/2)
×x2+x+1+xx2+x+1+1=limx+x+1x2+x+1+xlimx+x2x=12orlimxx+12x=12
Answered by Prithwish sen last updated on 03/Feb/19
let x=(1/h)  ∴x→∞⇒h→0  lim_(h→0) (((√(h^2 +h+1))−1)/h) (∵form (0/0) , we apply                                                    L′Hopital rule )  = lim_(h→0)  ((2h+1)/(2(√(h^2 +h+1))))  =(1/2)
letx=1hxh0limh0h2+h+11h(form00,weapplyLHopitalrule)=limh02h+12h2+h+1=12

Leave a Reply

Your email address will not be published. Required fields are marked *