Menu Close

lim-x-x-2-x-2-4x-x-3-




Question Number 99951 by bemath last updated on 24/Jun/20
lim_(x→−∞)  x^2 (√(x^2 +4x)) + x^3  ?
limxx2x2+4x+x3?
Commented by bobhans last updated on 24/Jun/20
lim_(x→−∞)  (√(x^6 +4x^5 )) +x^3  ×{(((√(x^6 +4x^5 )) −x^3 )/( (√(x^6 +4x^5 ))−x^3 )) } =  lim_(x→−∞)  ((4x^5 )/( (√(x^6 +4x^5 ))−x^3 )) = lim_(x→−∞)  ((−4)/( (√((1/x^4 )+(4/x^5 )))+(1/x^2 ))) = −∞
limxx6+4x5+x3×{x6+4x5x3x6+4x5x3}=limx4x5x6+4x5x3=limx41x4+4x5+1x2=
Answered by mathmax by abdo last updated on 24/Jun/20
f(x) =x^2 (√(x^2 +4x)) +x^3  ⇒ for x<0  we get f(x) =x^2 ∣x∣(√(1+(4/x)))+x^3   =−x^3 (√(1+(4/x)))+x^3  ∼−x^3 (1+(2/x))+x^3  =−2x^2   (x→−∞) ⇒  lim_(x→−∞) f(x) =−∞
f(x)=x2x2+4x+x3forx<0wegetf(x)=x2x1+4x+x3=x31+4x+x3x3(1+2x)+x3=2x2(x)limxf(x)=

Leave a Reply

Your email address will not be published. Required fields are marked *