Menu Close

lim-x-x-2-x-x-




Question Number 180106 by cherokeesay last updated on 07/Nov/22
lim_(x→∞) (√(x^2 +x))−x
limxx2+xx
Answered by a.lgnaoui last updated on 07/Nov/22
(√(x^2 +x)) −x=((((√(x^2 +x)) −x)((√(x^2 +x)) +x))/( (√(x^2 +x)) +x))  (x∈(]−∞,0]∪[−1,+∞[)  =(x/( (√(x^2 +x)) +x)) =(x/(x((√(1+(1/x))) +1)))  =(1/( (√(1+(1/x))) +1))  lim_(x→∞) (√(x^2 +x)) −x=lim_(x→∞) (1/( (√(1+(1/x))) +1))=(1/2)
x2+xx=(x2+xx)(x2+x+x)x2+x+x(x(],0][1,+[)=xx2+x+x=xx(1+1x+1)=11+1x+1limxx2+xx=limx11+1x+1=12
Commented by cherokeesay last updated on 07/Nov/22
very nice,  thank you sir.
verynice,thankyousir.
Answered by CElcedricjunior last updated on 07/Nov/22
(1/2)
12
Answered by mr W last updated on 07/Nov/22
=lim_(x→∞) (1/(1/x))((√(1+(1/x)))−1)  =lim_(t→0) (1/t)((√(1+t))−1)  =lim_(t→0) (1/t)(1+(t/2)+o(t^2 )−1)  =lim_(t→0) ((1/2)+o(t))  =(1/2)
=limx11x(1+1x1)=limt01t(1+t1)=limt01t(1+t2+o(t2)1)=limt0(12+o(t))=12
Commented by cherokeesay last updated on 07/Nov/22
Nice, thank you master.
Nice,thankyoumaster.

Leave a Reply

Your email address will not be published. Required fields are marked *