Menu Close

lim-x-x-3-x-2-x-4-1-x-2-




Question Number 120277 by bemath last updated on 30/Oct/20
 lim_(x→∞)  x^3  {(√(x^2 +(√(x^4 +1)))) − x(√2) } ?
limxx3{x2+x4+1x2}?
Commented by benjo_mathlover last updated on 30/Oct/20
 lim_(x→∞)  x^4 {(√(1+(√(1+(1/x^4 ))))) −(√2) }   setting (1/x) = z ∧ z→0   lim_(z→0)  (((√(1+(√(1+z^4 ))))−(√2))/z^4 ) × (((√(1+(√(1+z^4 ))))+(√2))/( (√(1+(√(1+z^4 ))))+(√2)))   lim_(z→0)  (((√(1+z^4 ))−1)/z^4 ) × (1/(2(√2))) = ((√2)/4)×lim_(z→0)  (z^4 /(z^4 ((√(1+z^4 ))+1)))  = ((√2)/4) ×(1/2) = ((√2)/8)
limxx4{1+1+1x42}setting1x=zz0limz01+1+z42z4×1+1+z4+21+1+z4+2limz01+z41z4×122=24×limz0z4z4(1+z4+1)=24×12=28
Answered by Dwaipayan Shikari last updated on 30/Oct/20
x^3 ((√(x^2 +(√(x^4 +1))))−x(√2))  =x^3 ((√(x^2 +x^2 (√(1+(1/x^4 )))))−x(√2))  =x^3 (x(√(1+(√(1+(1/x^4 )))))−x(√2))  =x^4 ((√(1+1+(1/(2x^4 ))))−(√2))  =(√2)x^4 ((√(1+(1/(4x^4 ))))−1)  =(√2) x^4 (1+(1/(8x^4 ))−1)  =(1/(4(√2)))
x3(x2+x4+1x2)=x3(x2+x21+1x4x2)=x3(x1+1+1x4x2)=x4(1+1+12x42)=2x4(1+14x41)=2x4(1+18x41)=142
Answered by bemath last updated on 30/Oct/20
 lim_(x→∞)  x^3  {((x^2 +(√(x^4 +1))−2x^2 )/( (√(x^2 +(√(x^4 +1)))) +x(√2))) } =   lim_(x→∞)  ((x^3  {(√(x^4 +1))−x^2  })/( (√(x^2 +(√(x^4 +1)))) +x(√2))) =    lim_(x→∞)  ((x^3  {x^4 +1−x^4 })/(x((√(1+(√(1+(1/x^4 )))))+(√2) )((√(x^4 +1))+x^2  ))) =   lim_(x→∞)  (x^3 /(x^3 ((√(1+(√(1+(1/x^4 )))))+(√2))((√(1+(1/x^4 )))+1)))=   lim_(x→∞)  (1/(((√(1+(√(1+(1/x^4 )))))+(√2))((√(1+(1/x^4 )))+1)))=   (1/(((√2)+(√2))×2)) = (1/(4(√2)))
limxx3{x2+x4+12x2x2+x4+1+x2}=limxx3{x4+1x2}x2+x4+1+x2=limxx3{x4+1x4}x(1+1+1x4+2)(x4+1+x2)=limxx3x3(1+1+1x4+2)(1+1x4+1)=limx1(1+1+1x4+2)(1+1x4+1)=1(2+2)×2=142

Leave a Reply

Your email address will not be published. Required fields are marked *