Menu Close

lim-x-x-4-1-5-x-1-1-5-x-1-5-




Question Number 119977 by bramlexs22 last updated on 28/Oct/20
 lim_(x→∞) ((x^4 )^(1/5) (((x+1))^(1/5) −(x)^(1/5)  ))=?
$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\sqrt[{\mathrm{5}}]{{x}^{\mathrm{4}} }\left(\sqrt[{\mathrm{5}}]{{x}+\mathrm{1}}−\sqrt[{\mathrm{5}}]{{x}}\:\right)\right)=? \\ $$
Answered by bemath last updated on 28/Oct/20
lim_(x→∞)  ((x^5 +x^4 ))^(1/5) −(x^5 )^(1/5)  = lim_(x→∞)  x ((1+(1/x)))^(1/5) −x   [ let (1/x) = v ]   lim_(v→0)  ((((1+v))^(1/5) −1)/v) = lim_(v→0)  (((1+(v/5))−1)/v) = (1/5)
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt[{\mathrm{5}}]{{x}^{\mathrm{5}} +{x}^{\mathrm{4}} }−\sqrt[{\mathrm{5}}]{{x}^{\mathrm{5}} }\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}\:\sqrt[{\mathrm{5}}]{\mathrm{1}+\frac{\mathrm{1}}{{x}}}−{x}\: \\ $$$$\left[\:{let}\:\frac{\mathrm{1}}{{x}}\:=\:{v}\:\right]\: \\ $$$$\underset{{v}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{5}}]{\mathrm{1}+{v}}−\mathrm{1}}{{v}}\:=\:\underset{{v}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+\frac{{v}}{\mathrm{5}}\right)−\mathrm{1}}{{v}}\:=\:\frac{\mathrm{1}}{\mathrm{5}} \\ $$
Answered by Dwaipayan Shikari last updated on 28/Oct/20
(x^4 )^(1/5)  ((x)^(1/5)  (((1+(1/x)))^(1/5) −1)  (x^5 )^(1/5)  (1+(1/(5x))−1)  =x.(1/(5x))=(1/5)
$$\sqrt[{\mathrm{5}}]{{x}^{\mathrm{4}} }\:\left(\sqrt[{\mathrm{5}}]{{x}}\:\left(\sqrt[{\mathrm{5}}]{\mathrm{1}+\frac{\mathrm{1}}{{x}}}−\mathrm{1}\right)\right. \\ $$$$\sqrt[{\mathrm{5}}]{{x}^{\mathrm{5}} }\:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{5}{x}}−\mathrm{1}\right) \\ $$$$={x}.\frac{\mathrm{1}}{\mathrm{5}{x}}=\frac{\mathrm{1}}{\mathrm{5}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *