Menu Close

lim-x-x-4-x-3-x-




Question Number 174258 by blackmamba last updated on 28/Jul/22
    lim_(x→∞)  (√(√(x^4 −x^3 ))) − x =?
limxx4x3x=?
Answered by cortano1 last updated on 28/Jul/22
  = lim_(x→∞)  (((√(x^4 −x^3 ))−x^2 )/( (√(√(x^4 −x^3 ))) +x))   = lim_(x→∞)  ((x^2 ((√(1−(1/x)))−1))/( (√(x^2 (√(1−(1/x)))))+x))   = lim_(x→∞)  ((x ((√(1−(1/x)))−1))/( (√(√(1−(1/x)))) +1))  = lim_(x→∞)  (((√(1−(1/x)))−1)/((1/x)[(√(√(1−(1/x))))+1]))   [ (1/x) = t ∧ t→0 ]  = lim_(t→0)  (((√(1−t))−1)/(t[(√(√(1−t)))+1 ]))  = (1/2) ×lim_(t→0)  ((−t)/(t [(√(1−t)) +1 ]))  = −(1/4)
=limxx4x3x2x4x3+x=limxx2(11x1)x211x+x=limxx(11x1)11x+1=limx11x11x[11x+1][1x=tt0]=limt01t1t[1t+1]=12×limt0tt[1t+1]=14

Leave a Reply

Your email address will not be published. Required fields are marked *