Menu Close

lim-x-x-6-5x-3-x-




Question Number 149317 by tabata last updated on 04/Aug/21
lim_(x→∞) (√(x^6 +5x^3 ))−x
$${lim}_{{x}\rightarrow\infty} \sqrt{{x}^{\mathrm{6}} +\mathrm{5}{x}^{\mathrm{3}} }−{x} \\ $$
Answered by EDWIN88 last updated on 04/Aug/21
 lim_(x→∞)  (√(x^6 (1+5x^(−3) )))−x  = lim_(x→∞) x^3 (√(1+5x^(−3) ))−x  let (1/x)=u then u→0  lim_(u→0)  ((1/u^3 )(√(1+5u^3 ))−(1/u))=  lim_(u→0) ((((√(1+5u^3 ))−u^2 )/u^3 ))= ∞
$$\left.\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt{{x}^{\mathrm{6}} \left(\mathrm{1}+\mathrm{5}{x}^{−\mathrm{3}} \right.}\right)−{x} \\ $$$$=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}{x}^{\mathrm{3}} \sqrt{\mathrm{1}+\mathrm{5}{x}^{−\mathrm{3}} }−{x} \\ $$$${let}\:\frac{\mathrm{1}}{{x}}={u}\:{then}\:{u}\rightarrow\mathrm{0} \\ $$$$\underset{{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{{u}^{\mathrm{3}} }\sqrt{\mathrm{1}+\mathrm{5}{u}^{\mathrm{3}} }−\frac{\mathrm{1}}{{u}}\right)= \\ $$$$\underset{{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\sqrt{\mathrm{1}+\mathrm{5}{u}^{\mathrm{3}} }−{u}^{\mathrm{2}} }{{u}^{\mathrm{3}} }\right)=\:\infty\: \\ $$
Commented by EDWIN88 last updated on 04/Aug/21
yes
$${yes} \\ $$
Commented by JDamian last updated on 04/Aug/21
in the second line, that 0 is actually an infinity
Answered by mathmax by abdo last updated on 04/Aug/21
f(x)=(√(x^6 +5x^3 ))−x ⇒f(x)=x^3 (√(1+(5/x^3 )))−x  ⇒f(x)∼∣x∣^3 (1+(5/(2x^3 )))−x ⇒  for x∼+∞  f(x)∼x^3 (1+(5/(2x^3 )))−x=x^3  −x+(5/2) ⇒lim_(x→+∞) f(x)=lim_(x→+∞) x^3  =+∞
$$\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{x}^{\mathrm{6}} +\mathrm{5x}^{\mathrm{3}} }−\mathrm{x}\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{3}} \sqrt{\mathrm{1}+\frac{\mathrm{5}}{\mathrm{x}^{\mathrm{3}} }}−\mathrm{x} \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{x}\right)\sim\mid\mathrm{x}\mid^{\mathrm{3}} \left(\mathrm{1}+\frac{\mathrm{5}}{\mathrm{2x}^{\mathrm{3}} }\right)−\mathrm{x}\:\Rightarrow\:\:\mathrm{for}\:\mathrm{x}\sim+\infty \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\sim\mathrm{x}^{\mathrm{3}} \left(\mathrm{1}+\frac{\mathrm{5}}{\mathrm{2x}^{\mathrm{3}} }\right)−\mathrm{x}=\mathrm{x}^{\mathrm{3}} \:−\mathrm{x}+\frac{\mathrm{5}}{\mathrm{2}}\:\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \mathrm{f}\left(\mathrm{x}\right)=\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \mathrm{x}^{\mathrm{3}} \:=+\infty \\ $$
Commented by mathmax by abdo last updated on 04/Aug/21
for x∼−∞ ⇒f(x)∼−x^3 (1+(5/(2x^3 )))−x =−x^3 −x−(5/2) ⇒  lim_(x→−∞) f(x)=lim_(x→−∞) −x^3  =+∞
$$\mathrm{for}\:\mathrm{x}\sim−\infty\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)\sim−\mathrm{x}^{\mathrm{3}} \left(\mathrm{1}+\frac{\mathrm{5}}{\mathrm{2x}^{\mathrm{3}} }\right)−\mathrm{x}\:=−\mathrm{x}^{\mathrm{3}} −\mathrm{x}−\frac{\mathrm{5}}{\mathrm{2}}\:\Rightarrow \\ $$$$\mathrm{lim}_{\mathrm{x}\rightarrow−\infty} \mathrm{f}\left(\mathrm{x}\right)=\mathrm{lim}_{\mathrm{x}\rightarrow−\infty} −\mathrm{x}^{\mathrm{3}} \:=+\infty \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *