Menu Close

lim-x-x-a-x-a-x-




Question Number 111442 by bobhans last updated on 03/Sep/20
  lim_(x→∞)  (((x+a)/(x−a)))^x ?
limx(x+axa)x?
Answered by bemath last updated on 03/Sep/20
Answered by ajfour last updated on 03/Sep/20
ln L=lim_(x→∞) xln (((1+(a/x))/(1−(a/x))))         = lim_(x→∞) {xln (1+(a/x))−xln (1−(a/x))}         = alim_(x→∞) {((ln (1+(a/x)))/(((a/x))))+((ln (1−(a/x)))/((−(a/x))))}  ln L = 2a  L = e^(2a)  .
lnL=limxxln(1+ax1ax)=limx{xln(1+ax)xln(1ax)}=alimx{ln(1+ax)(ax)+ln(1ax)(ax)}lnL=2aL=e2a.
Answered by Dwaipayan Shikari last updated on 03/Sep/20
lim_(x→∞) (1+((2a)/(x−a)))^((x/(2a)).((x−a)/(x−a)).2a)   =e^((2ax)/(x−a)) =e^(2a)
limx(1+2axa)x2a.xaxa.2a=e2axxa=e2a

Leave a Reply

Your email address will not be published. Required fields are marked *