Question Number 148416 by mathdanisur last updated on 27/Jul/21
$$\underset{\boldsymbol{{x}}\rightarrow\infty} {{lim}}\frac{{x}!\:-\:{cos}\left(\mathrm{2}{x}\right)}{\mathrm{3}{x}\:+\:\mathrm{1}}\:=\:? \\ $$
Answered by mathmax by abdo last updated on 28/Jul/21
$$\mathrm{we}\:\mathrm{have}\:\frac{\mathrm{x}!−\mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{3x}+\mathrm{1}}=\frac{\mathrm{x}!}{\mathrm{3x}+\mathrm{1}}−\frac{\mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{3x}+\mathrm{1}} \\ $$$$\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \:\frac{\mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{3x}+\mathrm{1}}=\mathrm{0}\:\mathrm{because}\:\mid\mathrm{cos}\left(\mathrm{2x}\right)\mid\leqslant\mathrm{1} \\ $$$$\mathrm{x}!\sim\mathrm{x}^{\mathrm{x}} \:\mathrm{e}^{−\mathrm{x}} \sqrt{\mathrm{2}\pi\mathrm{x}}\:\Rightarrow\frac{\mathrm{x}!}{\mathrm{3x}+\mathrm{1}}\sim\frac{\mathrm{1}}{\mathrm{3}}×\frac{\mathrm{x}!}{\mathrm{x}}\sim\frac{\mathrm{1}}{\mathrm{3}}\mathrm{x}^{\mathrm{x}−\mathrm{1}} \:\mathrm{e}^{−\mathrm{x}} \sqrt{\mathrm{2}\pi\mathrm{x}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{e}^{\left(\mathrm{x}−\mathrm{1}\right)\mathrm{logx}−\mathrm{x}} \:\sqrt{\mathrm{2}\pi\mathrm{x}}=\frac{\mathrm{1}}{\mathrm{3}}\sqrt{\mathrm{2}\pi}\:\mathrm{e}^{\left(\mathrm{x}−\mathrm{1}\right)\mathrm{logx}−\frac{\mathrm{1}}{\mathrm{2}}} \:\rightarrow+\infty\left(\mathrm{x}\rightarrow+\infty\right)\:\Rightarrow \\ $$$$\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \:\frac{\mathrm{x}!−\mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{3x}+\mathrm{1}}=+\infty \\ $$
Commented by mathdanisur last updated on 28/Jul/21
$${Thankyoy}\:{Ser} \\ $$