Menu Close

lim-x-x-e-1-1-x-x-




Question Number 79236 by jagoll last updated on 23/Jan/20
lim_(x→+∞)  x{e−(1+(1/x))^x }=?
limx+x{e(1+1x)x}=?
Commented by mathmax by abdo last updated on 23/Jan/20
let A(x)=x{e−(1+(1/x))^x }  we have (1+(1/x))^x =e^(xln(1+(1/x)))   we have ln^′ (1+u) =(1/(1+u)) =1−u +o(u^2 ) ⇒  ln(1+u) =u−(u^2 /2) +o(u^3 )(u∼o) ⇒ln(1+(1/x))=(1/x)−(1/(2x^2 )) +o((1/x^3 ))(x∼+∞) ⇒  xln(1+(1/x))=1−(1/(2x)) +o((1/x^2 )) ⇒e^(xln(1+(1/x))) =e^(1−(1/(2x))+o((1/x^2 )))   =e(1−(1/(2x)) +o((1/x^2 ))) ⇒e−(1+(1/x))^x =(e/(2x)) +o((1/x^2 )) ⇒  x{e−(1+(1/x))^x } =(e/2) +o((1/x)) ⇒lim_(x→+∞)  A(x)=(e/2)
letA(x)=x{e(1+1x)x}wehave(1+1x)x=exln(1+1x)wehaveln(1+u)=11+u=1u+o(u2)ln(1+u)=uu22+o(u3)(uo)ln(1+1x)=1x12x2+o(1x3)(x+)xln(1+1x)=112x+o(1x2)exln(1+1x)=e112x+o(1x2)=e(112x+o(1x2))e(1+1x)x=e2x+o(1x2)x{e(1+1x)x}=e2+o(1x)limx+A(x)=e2
Commented by jagoll last updated on 23/Jan/20
thank you sir
thankyousir
Commented by mathmax by abdo last updated on 24/Jan/20
you are welcome.
youarewelcome.
Answered by Smail last updated on 23/Jan/20
x=1/t  lim_(t→0) ((e−(1+t)^(1/t) )/t)=lim_(t→0) ((e−e^((ln(1+t))/t) )/t)  lim_(t→0) ((e−e^((t−(t^2 /2))(1/t)) )/t)=lim_(t→0) ((e−e(1−t/2))/t)=(e/2)
x=1/tlimt0e(1+t)1/tt=limt0eeln(1+t)ttlimt0ee(tt22)1tt=limt0ee(1t/2)t=e2
Commented by jagoll last updated on 23/Jan/20
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *