Menu Close

lim-x-x-log-e-x-




Question Number 28084 by tawa tawa last updated on 20/Jan/18
lim_(x→∞)   (x − log_e x)
limx(xlogex)
Commented by çhëý böý last updated on 20/Jan/18
lim_(x→∝)   (x−lnx)  lim_(x→∝ )   (lne^x −lnx)  lim_(x→∞)   ln ((e^x /(lnx)))  l′hopital  lim_(x→∞)   (e^x /(1/x))= (e^∞ /0)=DNE
limx→∝(xlnx)limx→∝(lnexlnx)limxln(exlnx)lhopitallimxex1x=e0=DNE
Commented by tawa tawa last updated on 20/Jan/18
God bless you sir
Godblessyousir
Commented by abdo imad last updated on 20/Jan/18
we know that  D_(lnx) =]0,+∞[   so  lim_(x→+∞^ ) ^ (x−lnx)=lim_(x→+∞) x(1− ((lnx)/x))=lim_(x→+∞) x  =+∞  because  lim_(x→+∞^ ) ((lnx)/x)=0 .
weknowthatDlnx=]0,+[solimx+(xlnx)=limx+x(1lnxx)=limx+x=+becauselimx+lnxx=0.
Commented by abdo imad last updated on 20/Jan/18
ln((e^x /(lnx)))= x−ln(lnx)≠ ln(e^x ) −lnx you have commited a  error sir .
ln(exlnx)=xln(lnx)ln(ex)lnxyouhavecommitedaerrorsir.
Commented by çhëý böý last updated on 20/Jan/18
yeah i made mistake it should be  ln  (((e^x )^′ )/((x)^′ ))=(e^x /1) =e^∞ =∞  thank u for d rectification sir
yeahimademistakeitshouldbeln(ex)(x)=ex1=e=thankufordrectificationsir
Commented by tawa tawa last updated on 21/Jan/18
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *