Menu Close

lim-x-x-tan-1-x-1-x-4-pi-4-




Question Number 145806 by bramlexs22 last updated on 08/Jul/21
 lim_(x→∞)  x(tan^(−1) (((x+1)/(x+4)))−(π/4)) =?
limxx(tan1(x+1x+4)π4)=?
Answered by gsk2684 last updated on 08/Jul/21
lim_(x→∞) x(tan^(−1) (((((x+1)/(x+4))−1)/(1+((x+1)/(x+4))))))  lim_(x→∞) x(tan^(−1) (((−3)/(2x+5))))  lim_(x→∞) x(((−3)/(2x+5)))=−(3/2)
limxx(tan1(x+1x+411+x+1x+4))limxx(tan1(32x+5))limxx(32x+5)=32
Answered by mathmax by abdo last updated on 09/Jul/21
f(x)=x(arctan(((x+1)/(x+4)))−(π/4)) ⇒f(x)=_(x=(1/t))  (1/t)(arctan(((1+(1/t))/(4+(1/t))))−(π/4))  =(1/t)(arctan(((t+1)/(4t+1)))−(π/4)) =z(twe have  arctan(((t+1)/(4t+1)))=arctan((1/4)(((4t+1+3)/(4t+1)))=arctan((1/4)+(3/(4(4t+1))))  ∼arctan((1/4)+(3/4)(1−4t))=arctan(1−3t)  we have tan(arctan(1−3t)−(π/4))=((1−3t−1)/(1+1−3t))=((−3t)/(2−3t))  =>z(t)∼(1/t)arctan(((−3t)/((2−3t))))∼=(1/t)((−3t)/(2−3t))→−(3/2)(t→0) ⇒  lim_(x→∞) f(x)=−(3/2)
f(x)=x(arctan(x+1x+4)π4)f(x)=x=1t1t(arctan(1+1t4+1t)π4)=1t(arctan(t+14t+1)π4)=z(twehavearctan(t+14t+1)=arctan(14(4t+1+34t+1)=arctan(14+34(4t+1))arctan(14+34(14t))=arctan(13t)wehavetan(arctan(13t)π4)=13t11+13t=3t23t=>z(t)1tarctan(3t(23t))∼=1t3t23t32(t0)limxf(x)=32

Leave a Reply

Your email address will not be published. Required fields are marked *