Menu Close

lim-x-x-x-2-2x-2-x-2-x-x-




Question Number 84130 by mahdi last updated on 09/Mar/20
lim_(x→+∞) x((√(x^2 +2x))−2(√(x^2 +x))+x)
limxx+(x2+2x2x2+x+x)
Commented by MJS last updated on 10/Mar/20
let x=(1/t)  lim_(t→0^+ )  ((1/t)((√((1/t^2 )+(2/t)))−2(√((1/t^2 )+(1/t)))+(1/t))) =  =lim_(t→0^+ )  ((1+(√(2t+1))−2(√(t+1)))/t^2 ) =  =lim_(t→0^+ )  (((d^2 /dt^2 )[1+(√(2t+1))−2(√(t+1))])/((d^2 /dt^2 )[t^2 ])) =  =lim_(t→0^+ )  (1/2)((1/(2(t+1)^(3/2) ))−(1/((2t+1)^(3/2) ))) =  =(1/2)((1/2)−1)=−(1/4)
letx=1tlimt0+(1t(1t2+2t21t2+1t+1t))==limt0+1+2t+12t+1t2==limt0+d2dt2[1+2t+12t+1]d2dt2[t2]==limt0+12(12(t+1)321(2t+1)32)==12(121)=14
Commented by mahdi last updated on 06/Apr/20
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *