Menu Close

lim-x-x-x-2-2x-x-2-x-2-x-




Question Number 159229 by tounghoungko last updated on 14/Nov/21
   lim_(x→∞)  x((√(x^2 +2x))+x−2(√(x^2 +x)) )=?
limxx(x2+2x+x2x2+x)=?
Answered by FongXD last updated on 14/Nov/21
L=lim_(x→+∞) x((√(x^2 +2x))−x+2x−2(√(x^2 +x)))  L=lim_(x→+∞) x[(((x^2 +2x)−x^2 )/( (√(x^2 +2x))+x))+((4x^2 −4(x^2 +x))/(2x+2(√(x^2 +x))))]  L=lim_(x→+∞) x(((2x)/( (√(x^2 +2x))+x))−((2x)/(x+(√(x^2 +x)))))  L=lim_(x→+∞) 2x^2 [(((x+(√(x^2 +x)))−((√(x^2 +2x))+x))/(((√(x^2 +2x))+x)(x+(√(x^2 +x)))))]  L=lim_(x→+∞) 2x^2 [(((x^2 +x)−(x^2 +2x))/(((√(x^2 +2x))+x)(x+(√(x^2 +x)))((√(x^2 +x))+(√(x^2 +2x)))))]  L=lim_(x→+∞) ((−2x^3 )/(x^3 ((√(1+2x^(−1) ))+1)(1+(√(1+x^(−1) )))((√(1+x^(−1) ))+(√(1+2x^(−1) )))))  L=((−2)/( ((√(1+0))+1)(1+(√(1+0)))((√(1+0))+(√(1+0)))))=−(1/4)
L=limxx+(x2+2xx+2x2x2+x)L=limxx+[(x2+2x)x2x2+2x+x+4x24(x2+x)2x+2x2+x]L=limxx+(2xx2+2x+x2xx+x2+x)L=lim2xx+2[(x+x2+x)(x2+2x+x)(x2+2x+x)(x+x2+x)]L=lim2xx+2[(x2+x)(x2+2x)(x2+2x+x)(x+x2+x)(x2+x+x2+2x)]L=limx+2x3x3(1+2x1+1)(1+1+x1)(1+x1+1+2x1)L=2(1+0+1)(1+1+0)(1+0+1+0)=14
Answered by qaz last updated on 15/Nov/21
lim_(x→∞) x((√(x^2 +2x))+x−2(√(x^2 +x)))  =lim_(x→0) (1/x^2 )((√(1+2x))+1−2(√(1+x)))  =lim_(x→0) (1/x^2 )((√(((√(1+2x))+1)^2 ))−(√(4+4x)))  =lim_(x→0,ξ→4) (1/x^2 )∙(1/( 2(√ξ)))(((√(1+2x))+1)^2 −(4+4x))  =(1/( 2))lim_(x→0) (((√(1+2x))−x−1)/x^2 )  =(1/( 2))lim_(x→0,ζ→1) (1/x^2 )∙(1/(2(√ζ)))(1+2x−(x+1)^2 )  =−(1/4)
limxx(x2+2x+x2x2+x)=limx01x2(1+2x+121+x)=limx01x2((1+2x+1)24+4x)=limx0,ξ41x212ξ((1+2x+1)2(4+4x))=12limx01+2xx1x2=12limx0,ζ11x212ζ(1+2x(x+1)2)=14

Leave a Reply

Your email address will not be published. Required fields are marked *