Menu Close

lim-x-x-x-4-x-3-5x-




Question Number 128992 by liberty last updated on 12/Jan/21
 lim_(x→∞)  (x (√(x−4)) −(√(x^3 +5x)) )=?
$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{x}\:\sqrt{\mathrm{x}−\mathrm{4}}\:−\sqrt{\mathrm{x}^{\mathrm{3}} +\mathrm{5x}}\:\right)=? \\ $$
Answered by bramlexs22 last updated on 12/Jan/21
 lim_(x→∞)  (√(x^3 −4x^2 )) −(√(x^3 +5x)) =   lim_(x→∞ )  ((−4x^2 −5x)/( (√(x^3 −4x^2 )) + (√(x^3 +5x)))) =   lim_(x→∞)  ((−4x^2 −5x)/(x^2  ((√((1/x)−(4/x^2 )))+(√((1/x)+(5/x^3 )))))) =   lim_(x→∞)  ((−4−(5/x))/( (√(x^(−1) −4x^(−2) )) +(√(x^(−1) +5x^(−3) ))))=−∞
$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt{\mathrm{x}^{\mathrm{3}} −\mathrm{4x}^{\mathrm{2}} }\:−\sqrt{\mathrm{x}^{\mathrm{3}} +\mathrm{5x}}\:= \\ $$$$\:\underset{{x}\rightarrow\infty\:} {\mathrm{lim}}\:\frac{−\mathrm{4x}^{\mathrm{2}} −\mathrm{5x}}{\:\sqrt{\mathrm{x}^{\mathrm{3}} −\mathrm{4x}^{\mathrm{2}} }\:+\:\sqrt{\mathrm{x}^{\mathrm{3}} +\mathrm{5x}}}\:= \\ $$$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{−\mathrm{4x}^{\mathrm{2}} −\mathrm{5x}}{\mathrm{x}^{\mathrm{2}} \:\left(\sqrt{\frac{\mathrm{1}}{\mathrm{x}}−\frac{\mathrm{4}}{\mathrm{x}^{\mathrm{2}} }}+\sqrt{\frac{\mathrm{1}}{\mathrm{x}}+\frac{\mathrm{5}}{\mathrm{x}^{\mathrm{3}} }}\right)}\:= \\ $$$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{−\mathrm{4}−\frac{\mathrm{5}}{\mathrm{x}}}{\:\sqrt{\mathrm{x}^{−\mathrm{1}} −\mathrm{4x}^{−\mathrm{2}} }\:+\sqrt{\mathrm{x}^{−\mathrm{1}} +\mathrm{5x}^{−\mathrm{3}} }}=−\infty \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *