Menu Close

lim-x-x-x-x-1-x-2-4-1-3-4-6-3-5-2-1-2-3-4-3-4-5-6-5-6-7-pi-2-lim-x-x-x-x-1-x-2-1-4-3-4-3-6-5-1-e-pi-2-1-e




Question Number 118967 by obaidullah last updated on 21/Oct/20
lim_(x→∞) ((((x!)/x^x ))^(1/x) )^(((2∙4)/(1∙3))∙((4∙6)/(3∙5))∙∙∙) =?  (2/1)∙(2/3)∙(4/3)∙(4/5)∙(6/5)∙(6/7)∙∙∙=(π/2)  lim_(x→∞) ((((x!)/x^x ))^(1/x) )^((2/1)∙(4/3)∙(4/3)∙(6/5)∙∙∙) =((1/e))^(π/2) =(√(((1/e))^π ))=(1/( (√e^π )))
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\left(\frac{{x}!}{{x}^{{x}} }\right)^{\frac{\mathrm{1}}{{x}}} \right)^{\frac{\mathrm{2}\centerdot\mathrm{4}}{\mathrm{1}\centerdot\mathrm{3}}\centerdot\frac{\mathrm{4}\centerdot\mathrm{6}}{\mathrm{3}\centerdot\mathrm{5}}\centerdot\centerdot\centerdot} =? \\ $$$$\frac{\mathrm{2}}{\mathrm{1}}\centerdot\frac{\mathrm{2}}{\mathrm{3}}\centerdot\frac{\mathrm{4}}{\mathrm{3}}\centerdot\frac{\mathrm{4}}{\mathrm{5}}\centerdot\frac{\mathrm{6}}{\mathrm{5}}\centerdot\frac{\mathrm{6}}{\mathrm{7}}\centerdot\centerdot\centerdot=\frac{\pi}{\mathrm{2}} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\left(\frac{{x}!}{{x}^{{x}} }\right)^{\frac{\mathrm{1}}{{x}}} \right)^{\frac{\mathrm{2}}{\mathrm{1}}\centerdot\frac{\mathrm{4}}{\mathrm{3}}\centerdot\frac{\mathrm{4}}{\mathrm{3}}\centerdot\frac{\mathrm{6}}{\mathrm{5}}\centerdot\centerdot\centerdot} =\left(\frac{\mathrm{1}}{{e}}\right)^{\frac{\pi}{\mathrm{2}}} =\sqrt{\left(\frac{\mathrm{1}}{{e}}\right)^{\pi} }=\frac{\mathrm{1}}{\:\sqrt{{e}^{\pi} }} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *