Question Number 122241 by TANMAY PANACEA last updated on 15/Nov/20
$${limit}… \\ $$
Commented by TANMAY PANACEA last updated on 15/Nov/20
Commented by Dwaipayan Shikari last updated on 15/Nov/20
$$\frac{\sqrt[{{n}}]{{n}!}}{{n}}.\frac{\left(\overset{\infty} {\sum}\frac{\mathrm{1}}{{n}}\right)}{{log}\left({n}\right)} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\sqrt[{{n}}]{\frac{{n}!}{{n}^{{n}} }}\:=\sqrt[{{n}}]{\frac{{n}^{{n}} }{{n}^{{n}} }.\frac{\mathrm{1}}{{e}^{{n}} }.\sqrt{\mathrm{2}\pi{n}}}\right).\left(\frac{\overset{\infty} {\sum}\frac{\mathrm{1}}{{n}}−{logn}+{logn}}{{logn}}\right) \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\:\:\frac{\mathrm{1}}{{e}}\left(\frac{\gamma}{{logn}}+\mathrm{1}\right)\:\:\:\:\:\:\left(\gamma=\mathscr{E}{ulerian}\:\:{constant}\right) \\ $$$$=\frac{\mathrm{1}}{{e}} \\ $$
Commented by mnjuly1970 last updated on 15/Nov/20
$${mercey}\:{mr}\:{dwaiypayan} \\ $$$$\:{your}\:{work}\:{and}\:{effort}\: \\ $$$$\:{is}\:{very}\:{admirable}. \\ $$$${god}\:{keep}\:{you}''\:{young}\:{sir}'' \\ $$$${and}\:{good}\:{luck}. \\ $$
Commented by Dwaipayan Shikari last updated on 15/Nov/20
$$\left.{With}\:{always}\:{pleasure}\:{sir}!\::\right) \\ $$
Commented by TANMAY PANACEA last updated on 15/Nov/20
$${excellent} \\ $$
Commented by TANMAY PANACEA last updated on 15/Nov/20
Commented by TANMAY PANACEA last updated on 15/Nov/20
$${li}\underset{{n}\rightarrow\infty\left(\frac{{n}!}{{n}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} ×{li}\underset{{n}\rightarrow\infty} {{m}}\:\frac{\left(\frac{\mathrm{1}}{\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+..+\frac{\mathrm{1}}{{n}}−{log}_{{e}} {n}+{log}_{{e}} {n}\right)}{{log}_{{e}} {n}}} {{m}} \\ $$$${First}\:{limit}\:\:{li}\underset{{n}\rightarrow\infty} {{m}}\:\left(\frac{{n}!}{{n}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} \\ $$$${T}_{{n}} =\frac{{n}!}{{n}^{{n}} }\:\:\:{so}\:{T}_{{n}+\mathrm{1}} =\frac{\left({n}+\mathrm{1}\right)!}{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} } \\ $$$${li}\underset{{n}\rightarrow\infty} {{m}}\:\frac{{T}_{{n}+\mathrm{1}} }{{T}_{{n}} }=\frac{\left({n}+\mathrm{1}\right){n}!}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{1}\right)^{{n}} }×\frac{{n}^{{n}} }{{n}!}=\left(\frac{{n}}{{n}+\mathrm{1}}\right)^{{n}} =\left(\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{{n}}}\right)^{{n}} \\ $$$${letP}=\frac{\mathrm{1}}{{n}}\:\:\:\:{so}\:\:\:\underset{{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{1}+{y}}\right)^{\frac{\mathrm{1}}{{y}}} ={li}\underset{{y}\rightarrow\mathrm{0}} {{m}}\:\frac{\mathrm{1}}{\left(\mathrm{1}+{y}\right)^{\frac{\mathrm{1}}{{y}}} } \\ $$$${log}_{{e}} {p}=−{li}\underset{{y}\rightarrow\mathrm{0}} {{m}}\:\frac{{log}_{{e}} \left(\mathrm{1}+{y}\right)}{{y}}=−\mathrm{1} \\ $$$${p}={e}^{−\mathrm{1}} \\ $$$${second}\:{limit} \\ $$$${li}\underset{{n}\rightarrow\infty} {{m}}\left(\frac{\frac{\mathrm{1}}{\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+..+\frac{\mathrm{1}}{{n}}−{log}_{{e}} {n}+{log}_{{e}} {n}}{{log}_{{e}} {n}}\right) \\ $$$$\left(\mathrm{1}+\frac{\gamma}{{log}_{{e}} {n}}\right)\rightarrow\left(\mathrm{1}+\frac{\gamma}{\infty}\right)=\mathrm{1} \\ $$$${so}\:{answet}=\frac{\mathrm{1}}{{e}}×\mathrm{1}=\frac{\mathrm{1}}{{e}} \\ $$
Commented by mnjuly1970 last updated on 15/Nov/20
$${excellent}.{thank}\:{you}\:{so}\:{much}\:''{sir}\:{tanmay}''… \\ $$
Commented by mathmax by abdo last updated on 15/Nov/20
$$\mathrm{let}\:\mathrm{U}_{\mathrm{n}} =\frac{\left(\mathrm{n}!\right)^{\frac{\mathrm{1}}{\mathrm{n}}} }{\mathrm{n}\:\mathrm{log}\left(\mathrm{n}\right)}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+…+\frac{\mathrm{1}}{\mathrm{n}}\right)\:\Rightarrow\mathrm{U}_{\mathrm{n}} =\frac{\left(\mathrm{n}!\right)^{\frac{\mathrm{1}}{\mathrm{n}}} }{\mathrm{nlog}\left(\mathrm{n}\right)}\mathrm{H}_{\mathrm{n}} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{H}_{\mathrm{n}} \sim\mathrm{ln}\left(\mathrm{n}\right)+\gamma\:\:\mathrm{and}\:\mathrm{n}!\:\sim\mathrm{n}^{\mathrm{n}} \mathrm{e}^{−\mathrm{n}} \sqrt{\mathrm{2}\pi\mathrm{n}}\:\Rightarrow \\ $$$$\mathrm{U}_{\mathrm{n}} \sim\frac{\left(\mathrm{n}^{\mathrm{n}} \mathrm{e}^{−\mathrm{n}} \sqrt{\mathrm{2}\pi\mathrm{n}}\right)^{\frac{\mathrm{1}}{\mathrm{n}}} }{\mathrm{nlog}\left(\mathrm{n}\right)}\left(\mathrm{logn}\:+\gamma\right) \\ $$$$=\frac{\mathrm{n}\:\mathrm{e}^{−\mathrm{1}} \left(\mathrm{2}\pi\mathrm{n}\right)^{\frac{\mathrm{1}}{\mathrm{2n}}} }{\mathrm{nlog}\left(\mathrm{n}\right)}\left(\gamma\:+\mathrm{logn}\right)\:=\mathrm{e}^{−\mathrm{1}} \left(\mathrm{2}\pi\mathrm{n}\right)^{\frac{\mathrm{1}}{\mathrm{2n}}} \left(\mathrm{1}+\frac{\gamma}{\mathrm{logn}}\right) \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \left(\mathrm{2}\pi\mathrm{n}\right)^{\frac{\mathrm{1}}{\mathrm{2n}}} \:=\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{e}^{\frac{\mathrm{log}\left(\mathrm{2}\pi\mathrm{n}\right)}{\mathrm{2n}}} \:=\mathrm{e}^{\mathrm{o}} \:=\mathrm{1}\:\:\Rightarrow \\ $$$$\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{U}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{e}} \\ $$$$ \\ $$