Menu Close

Lines-5x-12y-10-0-and-5x-12y-40-0-touch-circle-C-1-of-diameter-6-If-the-center-of-C-1-lies-in-the-Ist-quadrant-find-the-equation-of-circle-C-2-which-is-concentric-with-C-1-and-cuts-intercep




Question Number 62698 by Ankit0512 last updated on 24/Jun/19
Lines 5x+12y−10=0 and 5x−12y−40=0  touch circle C_1  of diameter 6. If the   center of C_1  lies in the Ist quadrant,  find the equation of circle C_2  which is   concentric with C_(1 )  and cuts intercept  of length 8 on these lines.
Lines5x+12y10=0and5x12y40=0touchcircleC1ofdiameter6.IfthecenterofC1liesintheIstquadrant,findtheequationofcircleC2whichisconcentricwithC1andcutsinterceptoflength8ontheselines.
Answered by tanmay last updated on 24/Jun/19
C_1   (x−a)^2 +(y−b)^2 =3^2    [r=(d/2)=(6/2)=3]  ∣((5a+12b−10)/( (√(5^2 +12^2 ))))∣=∣((5a−12b−40)/( (√(5^2 +(−12)^2 ))))∣=3  5a+12b−10=39  5a−12b−40=39  10a=78+50→a=12.8  24b+30=0→b=−(5/4)  C_1  (x−12.8)^2 +(y+(5/4))^2 =3^2   C_2   (x−12.8)^2 +(y+(5/4))^2 =R^2   distance from (12.8 ,(5/4)) to line 5x+12y−10=0  ∣((5×12.8−12×(5/4)−10)/( (√(5^2 +12^2 ))))∣=h(say)    ∣((39)/(13))∣=h  R^2 =h^2 +((8/2))^2   R^2 =9+16=25  C_2    (x−12.8)^2 +(y+(5/4))^2 =25
C1(xa)2+(yb)2=32[r=d2=62=3]5a+12b1052+122∣=∣5a12b4052+(12)2∣=35a+12b10=395a12b40=3910a=78+50a=12.824b+30=0b=54C1(x12.8)2+(y+54)2=32C2(x12.8)2+(y+54)2=R2distancefrom(12.8,54)toline5x+12y10=05×12.812×541052+122∣=h(say)3913∣=hR2=h2+(82)2R2=9+16=25C2(x12.8)2+(y+54)2=25
Commented by ajfour last updated on 24/Jun/19
please check, Sir..
pleasecheck,Sir..

Leave a Reply

Your email address will not be published. Required fields are marked *