Menu Close

ln-1-x-1-x-dx-




Question Number 96705 by bemath last updated on 04/Jun/20
∫ ln((√(1−x))+(√(1+x))) dx = ?
$$\int\:\mathrm{ln}\left(\sqrt{\mathrm{1}−\mathrm{x}}+\sqrt{\mathrm{1}+\mathrm{x}}\right)\:\mathrm{dx}\:=\:? \\ $$
Answered by john santu last updated on 04/Jun/20
D.I method  I = x ln((√(1−x))+(√(1+x))) −∫ ((x(((−1)/(2(√(1−x))))+(1/(2(√(1+x))))))/( (√(1−x))+(√(1+x)))) dx  I = x ln((√(1−x))+(√(1+x)))−(1/2)∫ x((((√(1−x^2 ))−1)/(x(√(1−x^2 ))))) dx  I=x ln((√(1−x))+(√(1+x)))−(x/2)+(1/2)∫ (dx/( (√(1−x^2 ))))  I= x ln((√(1−x))+(√(1+x))) −(x/2)+(1/2)sin^(−1) (x) +c
$$\mathrm{D}.\mathrm{I}\:\mathrm{method} \\ $$$$\mathrm{I}\:=\:{x}\:\mathrm{ln}\left(\sqrt{\mathrm{1}−{x}}+\sqrt{\mathrm{1}+{x}}\right)\:−\int\:\frac{{x}\left(\frac{−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{1}−{x}}}+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{1}+{x}}}\right)}{\:\sqrt{\mathrm{1}−{x}}+\sqrt{\mathrm{1}+{x}}}\:{dx} \\ $$$$\mathrm{I}\:=\:{x}\:\mathrm{ln}\left(\sqrt{\mathrm{1}−{x}}+\sqrt{\mathrm{1}+{x}}\right)−\frac{\mathrm{1}}{\mathrm{2}}\int\:{x}\left(\frac{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }−\mathrm{1}}{{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\right)\:{dx} \\ $$$$\mathrm{I}={x}\:\mathrm{ln}\left(\sqrt{\mathrm{1}−{x}}+\sqrt{\mathrm{1}+{x}}\right)−\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$$\mathrm{I}=\:{x}\:\mathrm{ln}\left(\sqrt{\mathrm{1}−{x}}+\sqrt{\mathrm{1}+{x}}\right)\:−\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}^{−\mathrm{1}} \left({x}\right)\:+{c}\: \\ $$
Commented by peter frank last updated on 04/Jun/20
thank you
$$\mathrm{thank}\:\mathrm{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *