Question Number 146996 by ArielVyny last updated on 17/Jul/21
$$\int{ln}\left({cht}\right){dt} \\ $$
Answered by mathmax by abdo last updated on 17/Jul/21
$$\int\:\mathrm{log}\left(\mathrm{cht}\right)\mathrm{dt}\:=\int\:\mathrm{log}\left(\frac{\mathrm{e}^{\mathrm{t}} \:+\mathrm{e}^{−\mathrm{t}} }{\mathrm{2}}\right)\mathrm{dt} \\ $$$$=\int\:\mathrm{log}\left(\mathrm{e}^{\mathrm{t}} +\mathrm{e}^{−\mathrm{t}} \right)\mathrm{dt}−\mathrm{tlog2}\:=\int\:\mathrm{log}\left(\mathrm{e}^{\mathrm{t}} \left(\mathrm{1}+\mathrm{e}^{−\mathrm{2t}} \right)\mathrm{dt}−\mathrm{tlog2}\right. \\ $$$$=\left(\mathrm{1}−\mathrm{log2}\right)\mathrm{t}\:+\int\:\mathrm{log}\left(\mathrm{1}+\mathrm{e}^{−\mathrm{2t}} \right)\mathrm{dt}\:\:\mathrm{we}\:\mathrm{have} \\ $$$$\frac{\mathrm{d}}{\mathrm{du}}\mathrm{log}\left(\mathrm{1}+\mathrm{u}\right)=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{u}}=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{u}^{\mathrm{n}} \:\Rightarrow\mathrm{log}\left(\mathrm{1}+\mathrm{u}\right)=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{u}^{\mathrm{n}+\mathrm{1}} }{\mathrm{n}+\mathrm{1}} \\ $$$$=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} \:\mathrm{u}^{\mathrm{n}} }{\mathrm{n}}\:\Rightarrow\int\:\mathrm{log}\left(\mathrm{1}+\mathrm{e}^{−\mathrm{2t}} \right)\mathrm{dt}=\int\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} }{\mathrm{n}}\mathrm{e}^{−\mathrm{2nt}} \:\mathrm{dt} \\ $$$$=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} }{\mathrm{n}}\int\:\mathrm{e}^{−\mathrm{2nt}} \:\mathrm{dt}\:=−\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} }{\mathrm{2n}^{\mathrm{2}} }\left(\mathrm{e}^{−\mathrm{2nt}} \:+\mathrm{K}\right)\:\Rightarrow \\ $$$$\int\mathrm{log}\left(\mathrm{cht}\right)\mathrm{dt}=\left(\mathrm{1}−\mathrm{log2}\right)\mathrm{t}\:+\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{2n}^{\mathrm{2}} }\left(\mathrm{e}^{−\mathrm{2nt}} \:+\mathrm{k}\right) \\ $$
Commented by ArielVyny last updated on 17/Jul/21
$${thank}\:{mr} \\ $$