Menu Close

ln-sinx-x-0-2kpi-k-Z-




Question Number 151486 by mathocean1 last updated on 21/Aug/21
∫ln(sinx)=?   x ≠ 0 + 2kπ ; k ∈ Z
ln(sinx)=?x0+2kπ;kZ
Answered by Olaf_Thorendsen last updated on 21/Aug/21
F(x) = ∫ln(sinx) dx  F(x) = xln(sinx)−∫xcotx dx  F(x) = xln(sinx)−∫xΣ_(n=0) ^∞ (((−1)^n 2^(2n) B_(2n) x^(2n−1) )/((2n)!)) dx  F(x) = xln(sinx)−∫Σ_(n=0) ^∞ (((−1)^n 2^(2n) B_(2n) x^(2n) )/((2n)!)) dx  F(x) = xln(sinx)−Σ_(n=0) ^∞ (((−1)^n 2^(2n) B_(2n) x^(2n+1) )/((2n+1)!))+C
F(x)=ln(sinx)dxF(x)=xln(sinx)xcotxdxF(x)=xln(sinx)xn=0(1)n22nB2nx2n1(2n)!dxF(x)=xln(sinx)n=0(1)n22nB2nx2n(2n)!dxF(x)=xln(sinx)n=0(1)n22nB2nx2n+1(2n+1)!+C

Leave a Reply

Your email address will not be published. Required fields are marked *