Question Number 27073 by sorour87 last updated on 01/Jan/18
$$\int\mathrm{ln}\:{x}×\mathrm{cos}\:\mathrm{2ln}\:{xdx} \\ $$
Answered by prakash jain last updated on 02/Jan/18
$${u}=\mathrm{ln}\:{x} \\ $$$${du}=\frac{\mathrm{1}}{{x}}{dx}\Rightarrow{dx}={xdu}\Rightarrow{dx}={e}^{{u}} {du} \\ $$$$=\int{ue}^{{u}} \mathrm{cos}\:\mathrm{2}{udu} \\ $$$$\mathrm{cos}\:\mathrm{2}{u}=\frac{{e}^{{i}\mathrm{2}{u}} +{e}^{−{i}\mathrm{2}{u}} }{\mathrm{2}}\:\:\left({i}=\sqrt{−\mathrm{1}}\right) \\ $$$$=\int{u}\frac{{e}^{\left(\mathrm{1}+\mathrm{2}{i}\right){u}} +{e}^{\left(\mathrm{1}−\mathrm{2}{i}\right){u}} }{\mathrm{2}}{du} \\ $$$$\int{ue}^{\left(\mathrm{1}+\mathrm{2}{i}\right){u}} {du} \\ $$$${u}\frac{{e}^{\left(\mathrm{1}+\mathrm{2}{i}\right){u}} }{\mathrm{1}+\mathrm{2}{i}}−\int\frac{{e}^{\left(\mathrm{1}+\mathrm{2}{i}\right){u}} }{\mathrm{1}+\mathrm{2}{i}}{du} \\ $$$${u}\frac{{e}^{\left(\mathrm{1}+\mathrm{2}{i}\right){u}} }{\mathrm{1}+\mathrm{2}{i}}−\frac{{e}^{\left(\mathrm{1}+\mathrm{2}{i}\right){u}} }{\left(\mathrm{1}+\mathrm{2}{i}\right)^{\mathrm{2}} } \\ $$$${total}\:{integral} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left[{u}\frac{{e}^{\left(\mathrm{1}+\mathrm{2}{i}\right){u}} }{\mathrm{1}+\mathrm{2}{i}}−\frac{{e}^{\left(\mathrm{1}+\mathrm{2}{i}\right){u}} }{\left(\mathrm{1}+\mathrm{2}{i}\right)^{\mathrm{2}} }+{u}\frac{{e}^{\left(\mathrm{1}−\mathrm{2}{i}\right){u}} }{\mathrm{1}−\mathrm{2}{i}}−\frac{{e}^{\left(\mathrm{1}−\mathrm{2}{i}\right){u}} }{\left(\mathrm{1}{w}−\mathrm{2}{i}\right)^{\mathrm{2}} }\right] \\ $$$$\mathrm{please}\:\mathrm{recheck}\:\mathrm{answer} \\ $$$$\mathrm{to}\:\mathrm{get}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{in}\:\mathrm{cos}/\mathrm{sin} \\ $$$$\mathrm{substitute}\:{e}^{{i}\theta} =\mathrm{cos}\:\theta+{i}\mathrm{sin}\:\theta \\ $$