Menu Close

ln-x-sin-1-x-dx-




Question Number 114094 by Lordose last updated on 17/Sep/20
∫ln(x)sin^(−1) (x)dx
ln(x)sin1(x)dx
Answered by Olaf last updated on 17/Sep/20
u′ = lnx, u = xlnx−x  v = arcsinx, v′ = (1/( (√(1−x^2 ))))  (xlnx−x)arcsinx−∫((xlnx−x)/( (√(1−x^2 ))))dx  xln((x/e))arcsinx+∫ln((x/e))((−2x)/( 2(√(1−x^2 ))))dx  u = ln((x/e)), u′ = (1/x)  v′ = ((−2x)/(2(√(1−x^2 )))), v = (√(1−x^2 ))  xln((x/e))arcsinx+ln((x/e))(√(1−x^2 ))−∫(1/x)(√(1−x^2 ))dx  ln((x/e))(xarcsinx+(√(1−x^2 )))−∫(1/x)(√(1−x^2 ))dx  x = sinu  ∫(1/x)(√(1−x^2 ))dx =   ∫(1/(sinu))(√(1−sin^2 u)).cosudu =  ∫ε((cos^2 u)/(sinu))du = ε∫((1−sin^2 u)/(sinu))du (ε=±1)  = ε∫(cscu−sinu)du =  ε((1/2)ln∣((1−cosu)/(1+cosu))∣+cosu) =   ε((1/2)ln∣((1−(√(1−x^2 )))/(1+(√(1−x^2 ))))∣+(√(1−x^2 )))...
u=lnx,u=xlnxxv=arcsinx,v=11x2(xlnxx)arcsinxxlnxx1x2dxxln(xe)arcsinx+ln(xe)2x21x2dxu=ln(xe),u=1xv=2x21x2,v=1x2xln(xe)arcsinx+ln(xe)1x21x1x2dxln(xe)(xarcsinx+1x2)1x1x2dxx=sinu1x1x2dx=1sinu1sin2u.cosudu=εcos2usinudu=ε1sin2usinudu(ε=±1)=ε(cscusinu)du=ε(12ln1cosu1+cosu+cosu)=ε(12ln11x21+1x2+1x2)
Commented by Lordose last updated on 17/Sep/20
Complete it sir
Completeitsir
Answered by 1549442205PVT last updated on 17/Sep/20
Integrating by part we have  I=∫ln(x)sin^(−1) (x)dx=∫(lnx−1)sin^(−1) (x)dx+∫sin^(−1) (x)dx  =(xlnx−x)sin^(−1) (x)−∫x[(lnx−1)sin^(−1) (x)]′dx+∫sin^(−1) xdx  =(xlnx−x)−∫((xlnx)/( (√(1−x^2 ))))dx+∫(x/( (√(1−x^2 ))))dx(1)  Since ∫(x/( (√(1−x^2 ))))dx=(√(1−x^2 )) ,  We just need must find∫ ((xlnx)/( (√(1−x^2 ))))dx  Put x=sinθ⇒dx=cosθdθ  ∫((xlnx)/( (√(1−x^2 ))))dx=∫sinθlnsinθdθ=−cosθlnsinθ  −∫(−cosθ)(lnsinθ)′dθ=−cosθlnsinθ+∫((cos^2 θ)/(sinθ))dθ  =−cosθlnsinθ+∫((1−sin^2 θ)/(sinθ))dθ=  =−cosθlnsinθ+∫(cosecθ−sinθ)dθ  =−cosθlnsinθ+ln(cosecθ−cosθ)+cosθ  =−(√(1−x^2 ))lnx+ln(((1−(√(1−x^2 )))/x))+(√(1−x^2 ))  From (1)we get  I=(xlnx−x)sin^(−1) x+(√(1−x^2 )) lnx−ln(((1−(√(1−x^2 )))/x))+C
IntegratingbypartwehaveI=ln(x)sin1(x)dx=(lnx1)sin1(x)dx+sin1(x)dx=(xlnxx)sin1(x)x[(lnx1)sin1(x)]dx+sin1xdx=(xlnxx)xlnx1x2dx+x1x2dx(1)Sincex1x2dx=1x2,Wejustneedmustfindxlnx1x2dxPutx=sinθdx=cosθdθxlnx1x2dx=sinθlnsinθdθ=cosθlnsinθ(cosθ)(lnsinθ)dθ=cosθlnsinθ+cos2θsinθdθ=cosθlnsinθ+1sin2θsinθdθ==cosθlnsinθ+(cosecθsinθ)dθ=cosθlnsinθ+ln(cosecθcosθ)+cosθ=1x2lnx+ln(11x2x)+1x2From(1)wegetI=(xlnxx)sin1x+1x2lnxln(11x2x)+C
Answered by MJS_new last updated on 17/Sep/20
again just because something went wrong above...  ∫ln x arcsin x dx=       [by parts]  =((√(1−x^2 ))+xarcsin x)ln x −∫((√(1−x^2 ))/x)+arcsin x dx  ∫((√(1−x^2 ))/x)dx=(√(1−x^2 ))+ln (x/(1+(√(1−x^2 ))))  ∫arcsin x dx=(√(1−x^2 ))+xarcsin x  ⇒  ∫ln x arcsin x dx=  =ln ((1+(√(1−x^2 )))/x) +((√(1−x^2 ))+xarcsin x)ln x −xarcsin x −2(√(1−x^2 )) +C
againjustbecausesomethingwentwrongabovelnxarcsinxdx=[byparts]=(1x2+xarcsinx)lnx1x2x+arcsinxdx1x2xdx=1x2+lnx1+1x2arcsinxdx=1x2+xarcsinxlnxarcsinxdx==ln1+1x2x+(1x2+xarcsinx)lnxxarcsinx21x2+C

Leave a Reply

Your email address will not be published. Required fields are marked *