Question Number 114094 by Lordose last updated on 17/Sep/20

Answered by Olaf last updated on 17/Sep/20

Commented by Lordose last updated on 17/Sep/20

Answered by 1549442205PVT last updated on 17/Sep/20
![Integrating by part we have I=∫ln(x)sin^(−1) (x)dx=∫(lnx−1)sin^(−1) (x)dx+∫sin^(−1) (x)dx =(xlnx−x)sin^(−1) (x)−∫x[(lnx−1)sin^(−1) (x)]′dx+∫sin^(−1) xdx =(xlnx−x)−∫((xlnx)/( (√(1−x^2 ))))dx+∫(x/( (√(1−x^2 ))))dx(1) Since ∫(x/( (√(1−x^2 ))))dx=(√(1−x^2 )) , We just need must find∫ ((xlnx)/( (√(1−x^2 ))))dx Put x=sinθ⇒dx=cosθdθ ∫((xlnx)/( (√(1−x^2 ))))dx=∫sinθlnsinθdθ=−cosθlnsinθ −∫(−cosθ)(lnsinθ)′dθ=−cosθlnsinθ+∫((cos^2 θ)/(sinθ))dθ =−cosθlnsinθ+∫((1−sin^2 θ)/(sinθ))dθ= =−cosθlnsinθ+∫(cosecθ−sinθ)dθ =−cosθlnsinθ+ln(cosecθ−cosθ)+cosθ =−(√(1−x^2 ))lnx+ln(((1−(√(1−x^2 )))/x))+(√(1−x^2 )) From (1)we get I=(xlnx−x)sin^(−1) x+(√(1−x^2 )) lnx−ln(((1−(√(1−x^2 )))/x))+C](https://www.tinkutara.com/question/Q114111.png)
Answered by MJS_new last updated on 17/Sep/20
![again just because something went wrong above... ∫ln x arcsin x dx= [by parts] =((√(1−x^2 ))+xarcsin x)ln x −∫((√(1−x^2 ))/x)+arcsin x dx ∫((√(1−x^2 ))/x)dx=(√(1−x^2 ))+ln (x/(1+(√(1−x^2 )))) ∫arcsin x dx=(√(1−x^2 ))+xarcsin x ⇒ ∫ln x arcsin x dx= =ln ((1+(√(1−x^2 )))/x) +((√(1−x^2 ))+xarcsin x)ln x −xarcsin x −2(√(1−x^2 )) +C](https://www.tinkutara.com/question/Q114127.png)