Menu Close

ln-x-x-2-dx-




Question Number 129060 by benjo_mathlover last updated on 12/Jan/21
 φ = ∫ ((ln (x))/x^2 ) dx
ϕ=ln(x)x2dx
Answered by liberty last updated on 12/Jan/21
 let ln (x)=h ⇒x = e^h    φ = ∫ (h/e^(2h) ) (e^h  dh )= ∫ h.e^(−h)  dh ; [ by parts ]   φ=−h.e^(−h) −e^(−h)  + c    φ = −((ln (x))/x)−(1/x) + c    φ = ((−ln (x)−1)/x) + c
letln(x)=hx=ehϕ=he2h(ehdh)=h.ehdh;[byparts]ϕ=h.eheh+cϕ=ln(x)x1x+cϕ=ln(x)1x+c

Leave a Reply

Your email address will not be published. Required fields are marked *