Menu Close

Locus-of-the-point-z-satisfying-the-equation-iz-1-z-i-2-is-




Question Number 19738 by Tinkutara last updated on 15/Aug/17
Locus of the point z satisfying the  equation ∣iz − 1∣ + ∣z − i∣ = 2 is
Locusofthepointzsatisfyingtheequationiz1+zi=2is
Commented by math khazana by abdo last updated on 22/Jun/18
let z =x+iy  (e) ⇔∣ix−y−1∣ +∣x+i(y−1)∣=2  ⇒(√(x^2  +(y+1)^2 ))  +(√(x^2  +(y−1)^2 ))=2 ⇒  (√(x^2  +(y+1)^2 )) =(2−(√(x^2  +(y−1)^2 ))) ⇒  x^2  +(y+1)^2  =4 −4(√(x^2  +(y−1)^2 ))  +x^2  +(y−1)^2 ⇒  4(√(x^2  +(y−1)^2 ))=(y−1)^2 −(y+1)^2  +4 ⇒  4(√(x^2  +(y−1)^2 ))=y^2  −2y +1 −y^2 −2y −1 +4  =4 −4y ⇒ x^2  +(y−1)^2 =(1−y)^2  ⇒ x=0 ⇒  {z∈C/∣iz−∣+∣z−i∣=2}=iR .
letz=x+iy(e)⇔∣ixy1+x+i(y1)∣=2x2+(y+1)2+x2+(y1)2=2x2+(y+1)2=(2x2+(y1)2)x2+(y+1)2=44x2+(y1)2+x2+(y1)24x2+(y1)2=(y1)2(y+1)2+44x2+(y1)2=y22y+1y22y1+4=44yx2+(y1)2=(1y)2x=0{zC/iz+zi∣=2}=iR.
Answered by ajfour last updated on 15/Aug/17
⇒    ∣z+i∣+∣z−i∣=2  ellipse with origin as centre.  focii :    z_1 =−i  ;  z_2 =i      shall try yo obtain equation in  the form:   (x^2 /a^2 )+(y^2 /b^2 )=1 ...  if equation of ellipse be     ∣z−z_1 ∣+∣z−z_2 ∣=d  with z_1 , and z_2  being focii      then   2a=d  and    b^2 =a^2 −((∣z_1 −z_2 ∣^2 )/4)    so    eccentricity e=((∣z_1 −z_2 ∣)/d) .
z+i+zi∣=2ellipsewithoriginascentre.focii:z1=i;z2=ishalltryyoobtainequationintheform:x2a2+y2b2=1ifequationofellipsebezz1+zz2∣=dwithz1,andz2beingfociithen2a=dandb2=a2z1z224soeccentricitye=z1z2d.
Commented by ajfour last updated on 16/Aug/17
Here major axis is the Imaginary  axis, so 2b=d and a^2 =b^2 −((∣z_1 −z_2 ∣^2 )/4)  d=2  , so b=1   z_1 =i ,  z_2 =−i    so   a^2 =1−((∣2i∣^2 )/4) =0  hence ellipse with minor axis  length zero and major axis length  equal to 2. extends from z=−i to  z=i , a double line segment.  (special case of ellipse).
HeremajoraxisistheImaginaryaxis,so2b=danda2=b2z1z224d=2,sob=1z1=i,z2=isoa2=12i24=0henceellipsewithminoraxislengthzeroandmajoraxislengthequalto2.extendsfromz=itoz=i,adoublelinesegment.(specialcaseofellipse).
Commented by Tinkutara last updated on 16/Aug/17
Sorry, I checked the answer today and  it was given a straight line!
Sorry,Icheckedtheanswertodayanditwasgivenastraightline!
Commented by Tinkutara last updated on 16/Aug/17
So we will consider it ellipse or a line?
Sowewillconsideritellipseoraline?
Commented by ajfour last updated on 16/Aug/17
cant say !
cantsay!

Leave a Reply

Your email address will not be published. Required fields are marked *