Menu Close

log-0-5-1-x-3log-0-25-1-x-log-1-16-1-x-2-2-2-




Question Number 183594 by greougoury555 last updated on 27/Dec/22
     log _(0.5)  (√(1+x)) + 3log _(0.25) (1−x)= log _(1/16) (1−x^2 )^2 +2
log0.51+x+3log0.25(1x)=log1/16(1x2)2+2
Answered by hmr last updated on 27/Dec/22
• log _c (a^b ) = b log_c  (a)  • log_c^b   (a) = (1/b) log_c  (a)    log _(0.5)  ((√(1+x))) + (3/2) log_( 0.5)  (1−x) = (1/4) log _(0.5)  (1−x^2 )^2  + 2  log _(0.5)  ((√(1+x))) + log_( 0.5)  (1−x)^(3/2)  = log _(0.5)  (1−x^2 )^(1/2)  +2log _(0.5)  (0.5)  log _(0.5)  ((√(1+x)))(1−x)^(3/2)  = log _(0.5)  (1−x^2 )^(1/2)  + log _(0.5)  ((1/4))  log _(0.5)  ((√(1−x^2 )))(1−x) = log _(0.5)  ((1/4))(1−x^2 )^(1/2)   ((√(1−x^2 )))(1−x) = ((1/4))((√(1−x^2 )))  1−x = (1/4)  x = (3/4)    If ((√(1−x^2 ))) = 0 ;   1−x^2  = 0 → x = ±1  but x = ±1 is not in domain.
logc(ab)=blogc(a)logcb(a)=1blogc(a)log0.5(1+x)+32log0.5(1x)=14log0.5(1x2)2+2log0.5(1+x)+log0.5(1x)32=log0.5(1x2)12+2log0.5(0.5)log0.5(1+x)(1x)32=log0.5(1x2)12+log0.5(14)log0.5(1x2)(1x)=log0.5(14)(1x2)12(1x2)(1x)=(14)(1x2)1x=14x=34If(1x2)=0;1x2=0x=±1butx=±1isnotindomain.

Leave a Reply

Your email address will not be published. Required fields are marked *