Menu Close

log-125-ln10-log-5-e-help-me-




Question Number 100832 by student work last updated on 28/Jun/20
log(√(125)) ∙ln10 ∙log_5 e=?  help me
$$\mathrm{log}\sqrt{\mathrm{125}}\:\centerdot\mathrm{ln10}\:\centerdot\mathrm{log}_{\mathrm{5}} \mathrm{e}=? \\ $$$$\mathrm{help}\:\mathrm{me} \\ $$
Commented by student work last updated on 28/Jun/20
what is the practice sir?
$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{practice}\:\mathrm{sir}? \\ $$
Commented by student work last updated on 28/Jun/20
thanks sir
$$\mathrm{thanks}\:\mathrm{sir} \\ $$
Commented by Dwaipayan Shikari last updated on 29/Jun/20
(3/2)ln10   But if the base is 10 then (3/2)log_(10) 10=(3/2)
$$\frac{\mathrm{3}}{\mathrm{2}}{ln}\mathrm{10}\: \\ $$$${But}\:{if}\:{the}\:{base}\:{is}\:\mathrm{10}\:{then}\:\frac{\mathrm{3}}{\mathrm{2}}{log}_{\mathrm{10}} \mathrm{10}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$
Answered by 1549442205 last updated on 29/Jun/20
Applying the property of logarithm:  log_a b×log_b c=log_a c we have:  Log_5 e×ln10.log(√(125))=log_5 10×log_(10) (√(125))  log_5 (√(125))=log_5 5^(3/2) =(3/2)  Result equal to  (3/2)  If log(√(125)) isn′t base 10 then equal to  log_5 10×log(√(125))=(3/2)log_5 10×log5=  (3/2)log_x 5×log_5 10=(3/2)log_x 10
$$\mathrm{Applying}\:\mathrm{the}\:\mathrm{property}\:\mathrm{of}\:\mathrm{logarithm}: \\ $$$$\mathrm{log}_{\mathrm{a}} \mathrm{b}×\mathrm{log}_{\mathrm{b}} \mathrm{c}=\mathrm{log}_{\mathrm{a}} \mathrm{c}\:\mathrm{we}\:\mathrm{have}: \\ $$$$\mathrm{Log}_{\mathrm{5}} \mathrm{e}×\mathrm{ln10}.\mathrm{log}\sqrt{\mathrm{125}}=\mathrm{log}_{\mathrm{5}} \mathrm{10}×\mathrm{log}_{\mathrm{10}} \sqrt{\mathrm{125}} \\ $$$$\mathrm{log}_{\mathrm{5}} \sqrt{\mathrm{125}}=\mathrm{log}_{\mathrm{5}} \mathrm{5}^{\frac{\mathrm{3}}{\mathrm{2}}} =\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{Result}}\:\boldsymbol{\mathrm{equal}}\:\boldsymbol{\mathrm{to}}\:\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\mathrm{If}\:\mathrm{log}\sqrt{\mathrm{125}}\:\mathrm{isn}'\mathrm{t}\:\mathrm{base}\:\mathrm{10}\:\mathrm{then}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\mathrm{log}_{\mathrm{5}} \mathrm{10}×\mathrm{log}\sqrt{\mathrm{125}}=\frac{\mathrm{3}}{\mathrm{2}}\mathrm{log}_{\mathrm{5}} \mathrm{10}×\mathrm{log5}= \\ $$$$\frac{\mathrm{3}}{\mathrm{2}}\mathrm{log}_{\mathrm{x}} \mathrm{5}×\mathrm{log}_{\mathrm{5}} \mathrm{10}=\frac{\mathrm{3}}{\mathrm{2}}\mathrm{log}_{\mathrm{x}} \mathrm{10} \\ $$
Commented by Dwaipayan Shikari last updated on 28/Jun/20
Sir the base is not 10
$${Sir}\:{the}\:{base}\:{is}\:{not}\:\mathrm{10} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *