Menu Close

log-2-2-2-2-2-




Question Number 19171 by gourav~ last updated on 06/Aug/17
log_(√2)  (√(2(√(2(√(2(√(2    ))))))))
$${log}_{\sqrt{\mathrm{2}}} \:\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}\:\:\:\:}}}} \\ $$
Commented by gourav~ last updated on 06/Aug/17
find value
$${find}\:{value} \\ $$
Answered by Tinkutara last updated on 06/Aug/17
(√(2(√(2(√(2(√2))))))) = 2^((2^4  − 1)/2^4 )  = 2^((15)/(16))  = ((√2))^((15)/8)   log_(√2) ((√2))^((15)/8)  = ((15)/8)
$$\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}}}}}\:=\:\mathrm{2}^{\frac{\mathrm{2}^{\mathrm{4}} \:−\:\mathrm{1}}{\mathrm{2}^{\mathrm{4}} }} \:=\:\mathrm{2}^{\frac{\mathrm{15}}{\mathrm{16}}} \:=\:\left(\sqrt{\mathrm{2}}\right)^{\frac{\mathrm{15}}{\mathrm{8}}} \\ $$$$\mathrm{log}_{\sqrt{\mathrm{2}}} \left(\sqrt{\mathrm{2}}\right)^{\frac{\mathrm{15}}{\mathrm{8}}} \:=\:\frac{\mathrm{15}}{\mathrm{8}} \\ $$
Commented by Tinkutara last updated on 06/Aug/17
See Q. 18551.
$$\mathrm{See}\:\mathrm{Q}.\:\mathrm{18551}. \\ $$
Commented by chernoaguero@gmail.com last updated on 06/Aug/17
sir how did u ((2^4 −1)/2^4 )  plz be simplistic
$${sir}\:{how}\:{did}\:{u}\:\frac{\mathrm{2}^{\mathrm{4}} −\mathrm{1}}{\mathrm{2}^{\mathrm{4}} }\:\:{plz}\:{be}\:{simplistic} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *