Question Number 149410 by mathdanisur last updated on 05/Aug/21
$$\frac{{log}_{\mathrm{2}} \:\mathrm{2}^{\mathrm{20}} \:+\:{log}_{\mathrm{2}} \:\mathrm{20}\:\centerdot\:{log}_{\mathrm{2}} \:\mathrm{5}\:-\:\mathrm{2}\:{log}_{\mathrm{2}} \:\mathrm{2}^{\mathrm{5}} }{{log}_{\mathrm{2}} \:\mathrm{20}\:+\:\mathrm{2}\:{log}_{\mathrm{2}} \:\mathrm{5}}\:=\:? \\ $$
Answered by Rasheed.Sindhi last updated on 05/Aug/21
$$\frac{{log}_{\mathrm{2}} \:\mathrm{2}^{\mathrm{20}} \:+\:{log}_{\mathrm{2}} \:\mathrm{20}\:\centerdot\:{log}_{\mathrm{2}} \:\mathrm{5}\:-\:\mathrm{2}\:{log}_{\mathrm{2}} \:\mathrm{2}^{\mathrm{5}} }{{log}_{\mathrm{2}} \:\mathrm{20}\:+\:\mathrm{2}\:{log}_{\mathrm{2}} \:\mathrm{5}}\: \\ $$$$=\frac{\mathrm{20}\:+\:{log}_{\mathrm{2}} \:\mathrm{20}\:\centerdot\:{log}_{\mathrm{2}} \:\mathrm{5}\:-\:\mathrm{2}\left(\mathrm{5}\right)}{{log}_{\mathrm{2}} \:\mathrm{20}\:+\:\mathrm{2}\:{log}_{\mathrm{2}} \:\mathrm{5}}\:\: \\ $$$$=\frac{\mathrm{10}\:+\:{log}_{\mathrm{2}} \left(\mathrm{2}^{\mathrm{2}} .\mathrm{5}\right)\centerdot\:{log}_{\mathrm{2}} \:\mathrm{5}\:}{{log}_{\mathrm{2}} \left(\mathrm{2}^{\mathrm{2}} .\mathrm{5}\right)\:+\:\mathrm{2}\:{log}_{\mathrm{2}} \:\mathrm{5}}\:\: \\ $$$$=\frac{\mathrm{10}\:+\left({log}_{\mathrm{2}} \mathrm{2}^{\mathrm{2}} +{log}_{\mathrm{2}} \mathrm{5}\right)\centerdot\:{log}_{\mathrm{2}} \:\mathrm{5}\:}{{log}_{\mathrm{2}} \mathrm{2}^{\mathrm{2}} +{log}_{\mathrm{2}} \mathrm{5}\:+\:\mathrm{2}\:{log}_{\mathrm{2}} \:\mathrm{5}}\:\: \\ $$$$=\frac{\mathrm{10}\:+\left(\mathrm{2}+{log}_{\mathrm{2}} \mathrm{5}\right)\centerdot\:{log}_{\mathrm{2}} \:\mathrm{5}\:}{\mathrm{2}+\:\mathrm{3}\:{log}_{\mathrm{2}} \:\mathrm{5}}\:\: \\ $$$$=\frac{\mathrm{10}\:+\mathrm{2}{log}_{\mathrm{2}} \mathrm{5}+{log}_{\mathrm{2}} \mathrm{5}\centerdot\:{log}_{\mathrm{2}} \:\mathrm{5}\:}{\mathrm{2}+\:\mathrm{3}\:{log}_{\mathrm{2}} \:\mathrm{5}}\:\: \\ $$$$=\frac{\mathrm{10}\:+\mathrm{2}{log}_{\mathrm{2}} \mathrm{5}+\left({log}_{\mathrm{2}} \mathrm{5}\right)^{\mathrm{2}} \:}{\mathrm{2}+\:\mathrm{3}\:{log}_{\mathrm{2}} \:\mathrm{5}}\:\: \\ $$$$=\frac{\mathrm{10}\:+\mathrm{2}\left(\mathrm{2}.\mathrm{3219}\right)+\left(\mathrm{2}.\mathrm{3219}\right)^{\mathrm{2}} \:}{\mathrm{2}+\:\mathrm{3}\left(\mathrm{2}.\mathrm{3219}\right)}\approx\mathrm{2}.\mathrm{2346} \\ $$
Commented by mathdanisur last updated on 05/Aug/21
$${Thank}\:{You}\:\mathrm{Ser} \\ $$