Menu Close

log-2-2-20-log-2-20-log-2-5-2-log-2-2-5-log-2-20-2-log-2-5-




Question Number 149410 by mathdanisur last updated on 05/Aug/21
((log_2  2^(20)  + log_2  20 ∙ log_2  5 - 2 log_2  2^5 )/(log_2  20 + 2 log_2  5)) = ?
log2220+log220log252log225log220+2log25=?
Answered by Rasheed.Sindhi last updated on 05/Aug/21
((log_2  2^(20)  + log_2  20 ∙ log_2  5 - 2 log_2  2^5 )/(log_2  20 + 2 log_2  5))   =((20 + log_2  20 ∙ log_2  5 - 2(5))/(log_2  20 + 2 log_2  5))    =((10 + log_2 (2^2 .5)∙ log_2  5 )/(log_2 (2^2 .5) + 2 log_2  5))    =((10 +(log_2 2^2 +log_2 5)∙ log_2  5 )/(log_2 2^2 +log_2 5 + 2 log_2  5))    =((10 +(2+log_2 5)∙ log_2  5 )/(2+ 3 log_2  5))    =((10 +2log_2 5+log_2 5∙ log_2  5 )/(2+ 3 log_2  5))    =((10 +2log_2 5+(log_2 5)^2  )/(2+ 3 log_2  5))    =((10 +2(2.3219)+(2.3219)^2  )/(2+ 3(2.3219)))≈2.2346
log2220+log220log252log225log220+2log25=20+log220log252(5)log220+2log25=10+log2(22.5)log25log2(22.5)+2log25=10+(log222+log25)log25log222+log25+2log25=10+(2+log25)log252+3log25=10+2log25+log25log252+3log25=10+2log25+(log25)22+3log25=10+2(2.3219)+(2.3219)22+3(2.3219)2.2346
Commented by mathdanisur last updated on 05/Aug/21
Thank You Ser
ThankYouSer

Leave a Reply

Your email address will not be published. Required fields are marked *