Question Number 91862 by jagoll last updated on 03/May/20
$$\mathrm{log}_{\mathrm{2}} \left({x}\right)+\mathrm{log}_{\mathrm{3}} \left({x}\right)\:=\:\mathrm{1} \\ $$$${x}\:=? \\ $$
Commented by Tony Lin last updated on 03/May/20
$$\frac{{lnx}}{{ln}\mathrm{2}}+\frac{{lnx}}{{ln}\mathrm{3}}=\mathrm{1} \\ $$$${lnx}\left(\frac{{ln}\mathrm{6}}{{ln}\mathrm{2}×{ln}\mathrm{3}}\right)=\mathrm{1} \\ $$$${lnx}=\frac{{ln}\mathrm{2}×{ln}\mathrm{3}}{{ln}\mathrm{6}} \\ $$$${x}={e}^{\frac{{ln}\mathrm{2}×{ln}\mathrm{3}}{{ln}\mathrm{6}}} \approx\mathrm{1}.\mathrm{53} \\ $$
Commented by jagoll last updated on 03/May/20
Commented by hmamarques1994@gmail.com last updated on 03/May/20
$$\: \\ $$$$\:{x}\:=\:\mathrm{2}^{{log}_{\mathrm{6}} \:\mathrm{3}} \:\approx\:\mathrm{1},\mathrm{52959} \\ $$
Commented by john santu last updated on 03/May/20
$$\mathrm{2}^{\mathrm{log}_{\mathrm{6}} \left(\mathrm{3}\right)} \:=\:\mathrm{3}^{\mathrm{log}_{\mathrm{6}} \left(\mathrm{2}\right)} \\ $$
Answered by john santu last updated on 03/May/20
Commented by john santu last updated on 03/May/20
Commented by john santu last updated on 03/May/20
1.52959232849
Commented by hmamarques1994@gmail.com last updated on 03/May/20