Menu Close

log-2-x-log-3-x-1-x-




Question Number 91862 by jagoll last updated on 03/May/20
log_2 (x)+log_3 (x) = 1  x =?
$$\mathrm{log}_{\mathrm{2}} \left({x}\right)+\mathrm{log}_{\mathrm{3}} \left({x}\right)\:=\:\mathrm{1} \\ $$$${x}\:=? \\ $$
Commented by Tony Lin last updated on 03/May/20
((lnx)/(ln2))+((lnx)/(ln3))=1  lnx(((ln6)/(ln2×ln3)))=1  lnx=((ln2×ln3)/(ln6))  x=e^((ln2×ln3)/(ln6)) ≈1.53
$$\frac{{lnx}}{{ln}\mathrm{2}}+\frac{{lnx}}{{ln}\mathrm{3}}=\mathrm{1} \\ $$$${lnx}\left(\frac{{ln}\mathrm{6}}{{ln}\mathrm{2}×{ln}\mathrm{3}}\right)=\mathrm{1} \\ $$$${lnx}=\frac{{ln}\mathrm{2}×{ln}\mathrm{3}}{{ln}\mathrm{6}} \\ $$$${x}={e}^{\frac{{ln}\mathrm{2}×{ln}\mathrm{3}}{{ln}\mathrm{6}}} \approx\mathrm{1}.\mathrm{53} \\ $$
Commented by jagoll last updated on 03/May/20
��
Commented by hmamarques1994@gmail.com last updated on 03/May/20
    x = 2^(log_6  3)  ≈ 1,52959
$$\: \\ $$$$\:{x}\:=\:\mathrm{2}^{{log}_{\mathrm{6}} \:\mathrm{3}} \:\approx\:\mathrm{1},\mathrm{52959} \\ $$
Commented by john santu last updated on 03/May/20
2^(log_6 (3))  = 3^(log_6 (2))
$$\mathrm{2}^{\mathrm{log}_{\mathrm{6}} \left(\mathrm{3}\right)} \:=\:\mathrm{3}^{\mathrm{log}_{\mathrm{6}} \left(\mathrm{2}\right)} \\ $$
Answered by john santu last updated on 03/May/20
Commented by john santu last updated on 03/May/20
������
Commented by john santu last updated on 03/May/20
1.52959232849
Commented by hmamarques1994@gmail.com last updated on 03/May/20
Ge^� nio!
$${G}\hat {{e}nio}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *