Menu Close

log-3-12-log-36-3-log-3-4-log-108-3-x-x-




Question Number 168278 by Florian last updated on 07/Apr/22
     ((log_3 (12))/(log_(36) (3)))−((log_3 (4))/(log_(108) (3))) = x       x =
$$\:\:\:\:\:\frac{{log}_{\mathrm{3}} \left(\mathrm{12}\right)}{{log}_{\mathrm{36}} \left(\mathrm{3}\right)}−\frac{{log}_{\mathrm{3}} \left(\mathrm{4}\right)}{{log}_{\mathrm{108}} \left(\mathrm{3}\right)}\:=\:{x} \\ $$$$\:\:\:\:\:{x}\:=\: \\ $$
Commented by benhamimed last updated on 07/Apr/22
(((ln 12)/(ln 3))/((ln 3)/(ln 36)))−(((ln 4)/(ln 3))/((ln 3)/(ln 108)))=x  ((ln 12×ln 36−ln 4×ln 108)/(ln^2 3))=x  (((2ln 2+ln 3)2(ln 2+ln 3)−2ln 2(2ln2+3ln 3) )/(ln^2 3))=x  ((2(ln 2+ln 3)ln 3−2ln 2ln 3)/(ln ^2 3))=x  ((2ln 3)/(ln 3))=x  x=2
$$\frac{\frac{\mathrm{ln}\:\mathrm{12}}{\mathrm{ln}\:\mathrm{3}}}{\frac{\mathrm{ln}\:\mathrm{3}}{\mathrm{ln}\:\mathrm{36}}}−\frac{\frac{\mathrm{ln}\:\mathrm{4}}{\mathrm{ln}\:\mathrm{3}}}{\frac{\mathrm{ln}\:\mathrm{3}}{\mathrm{ln}\:\mathrm{108}}}={x} \\ $$$$\frac{\mathrm{ln}\:\mathrm{12}×\mathrm{ln}\:\mathrm{36}−\mathrm{ln}\:\mathrm{4}×\mathrm{ln}\:\mathrm{108}}{\mathrm{ln}\:^{\mathrm{2}} \mathrm{3}}={x} \\ $$$$\frac{\left(\mathrm{2ln}\:\mathrm{2}+\mathrm{ln}\:\mathrm{3}\right)\mathrm{2}\left(\mathrm{ln}\:\mathrm{2}+\mathrm{ln}\:\mathrm{3}\right)−\mathrm{2ln}\:\mathrm{2}\left(\mathrm{2ln2}+\mathrm{3ln}\:\mathrm{3}\right)\:}{\mathrm{ln}\:^{\mathrm{2}} \mathrm{3}}={x} \\ $$$$\frac{\mathrm{2}\left(\mathrm{ln}\:\mathrm{2}+\mathrm{ln}\:\mathrm{3}\right)\mathrm{ln}\:\mathrm{3}−\mathrm{2ln}\:\mathrm{2ln}\:\mathrm{3}}{\mathrm{ln}\overset{\mathrm{2}} {\:}\mathrm{3}}={x} \\ $$$$\frac{\mathrm{2ln}\:\mathrm{3}}{\mathrm{ln}\:\mathrm{3}}={x} \\ $$$${x}=\mathrm{2} \\ $$
Commented by Florian last updated on 07/Apr/22
Very Good !
$${Very}\:{Good}\:! \\ $$
Answered by greogoury55 last updated on 07/Apr/22
⇒x = log _3 (9×4).log _3 (3×4)−log _3 (4).log _3 (27×4)  ⇒x=(2+log _3 (4))(1+log _3 (4))−log _3 (4)(3+log _3 (4))  let log _3 (4)= d  ⇒x=(2+d)(1+d)−d(3+d)  ⇒x=2+3d+d^2 −3d−d^2   ⇒x=2
$$\Rightarrow{x}\:=\:\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{9}×\mathrm{4}\right).\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{3}×\mathrm{4}\right)−\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{4}\right).\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{27}×\mathrm{4}\right) \\ $$$$\Rightarrow{x}=\left(\mathrm{2}+\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{4}\right)\right)\left(\mathrm{1}+\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{4}\right)\right)−\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{4}\right)\left(\mathrm{3}+\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{4}\right)\right) \\ $$$${let}\:\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{4}\right)=\:{d} \\ $$$$\Rightarrow{x}=\left(\mathrm{2}+{d}\right)\left(\mathrm{1}+{d}\right)−{d}\left(\mathrm{3}+{d}\right) \\ $$$$\Rightarrow{x}=\mathrm{2}+\mathrm{3}{d}+{d}^{\mathrm{2}} −\mathrm{3}{d}−{d}^{\mathrm{2}} \\ $$$$\Rightarrow{x}=\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *