Menu Close

log-3-a-1-log-4-a-8-a-please-solution-




Question Number 185085 by Ml last updated on 16/Jan/23
log_3 (a+1)=log_4 (a+8)  a=??  please solution
log3(a+1)=log4(a+8)a=??pleasesolution
Answered by Frix last updated on 16/Jan/23
log_3  (a+1) =x ⇔ 3^x =a+1 ⇔ a=3^x −1  log_4  (a+8) =x ⇔ 4^x =a+8 ⇔ a=4^x −8  ⇒  4^x −8=3^x −1  4^x −3^x =7  Obviously x=2 ⇒  a=3^2 −1=8  a=4^2 −8=8
log3(a+1)=x3x=a+1a=3x1log4(a+8)=x4x=a+8a=4x84x8=3x14x3x=7Obviouslyx=2a=321=8a=428=8
Answered by aba last updated on 16/Jan/23
consider the function  f(x)=log_3 (x+1)−log_4 (x+8)     Df=]−1,+∞[  f^′ (x)=(1/((x+1)ln(3)))−(1/((x+8)ln(4)))          =(((x+8)ln(4)−(x+1)ln(3))/((x+1)(x+8)ln(3)ln(4)))          =((x(ln(4)−ln(3))+8ln(4)−ln(3))/((x+1)(x+8)ln(3)ln(4)))  the denominator is positive on the domain of f  f′(x)=0 ⇒ x(ln(4)−ln(3))+8ln(4)−ln(3)=0                  ⇒ x=−((8ln(4)−ln(3))/(ln(4)−ln(3)))                 ⇒x=−((ln((4^8 /3)))/(ln((4/3)))) <−1               ⇒x<−1  so the function f is strictly increasing on ]−1,+∞[. Hence the equation f(x)=0 has at most one solution  since f(8)=0, we found it
considerthefunctionf(x)=log3(x+1)log4(x+8)Df=]1,+[f(x)=1(x+1)ln(3)1(x+8)ln(4)=(x+8)ln(4)(x+1)ln(3)(x+1)(x+8)ln(3)ln(4)=x(ln(4)ln(3))+8ln(4)ln(3)(x+1)(x+8)ln(3)ln(4)thedenominatorispositiveonthedomainofff(x)=0x(ln(4)ln(3))+8ln(4)ln(3)=0x=8ln(4)ln(3)ln(4)ln(3)x=ln(483)ln(43)<1x<1sothefunctionfisstrictlyincreasingon]1,+[.Hencetheequationf(x)=0hasatmostonesolutionsincef(8)=0,wefoundit

Leave a Reply

Your email address will not be published. Required fields are marked *