Menu Close

log-4-x-log-y-log-25-x-y-Find-x-y-




Question Number 144563 by mathdanisur last updated on 26/Jun/21
log_4 (x) = log(y) = log_(25) (x+y)  Find  (x/y) = ?
log4(x)=log(y)=log25(x+y)Findxy=?
Answered by imjagoll last updated on 26/Jun/21
 let log _4 (x)=log _(10) (y)=log _(25) (x+y)=k  then  { ((x=4^k )),((y=10^k )),((x+y=25^k )) :}  ⇔ 4^k  + 10^k  = 25^k   ⇒1+((5/2))^k =((5/2))^(2k)   ⇒t^2 −t−1 =0 ; where t=((5/2))^k   ⇒t=((1+(√5))/2)  ⇒we find (x/y)= (4^k /(10^k ))=((2/5))^k =(2/( (√5)+1))  (x/y)= ((2((√5)−1))/4)= (((√5)−1)/2)
letlog4(x)=log10(y)=log25(x+y)=kthen{x=4ky=10kx+y=25k4k+10k=25k1+(52)k=(52)2kt2t1=0;wheret=(52)kt=1+52wefindxy=4k10k=(25)k=25+1xy=2(51)4=512
Commented by mathdanisur last updated on 26/Jun/21
alot cool thanks Sir, answer (1/2)((√5)+1)
alotcoolthanksSir,answer12(5+1)
Commented by imjagoll last updated on 26/Jun/21
wrong. if (y/x)= (((√5)+1)/2) true
wrong.ifyx=5+12true
Commented by mathdanisur last updated on 26/Jun/21
answer: (x/y)=(((√5)−1)/2) and (y/x)=(((√5)+1)/2) ?
answer:xy=512andyx=5+12?
Commented by liberty last updated on 26/Jun/21
from 4^k  +10^k  = 25^k  divided by 25^k   give ((2/5))^(2k) +((2/5))^k =1 where t =((2/5))^k   ⇒t^2 +t−1 = 0 ⇒t =((−1 +(√5))/2)  then (x/y)= (((√5)−1)/2) ← correct
from4k+10k=25kdividedby25kgive(25)2k+(25)k=1wheret=(25)kt2+t1=0t=1+52thenxy=512correct
Commented by haladu last updated on 26/Jun/21
Nice!
Nice!
Commented by mathdanisur last updated on 27/Jun/21
thanks Sir cool
thanksSircool
Answered by haladu last updated on 26/Jun/21
       ⇒  x  =  4^h  = ( 2^h )^2      ⇒    y = 10^h    ⇔ y^2  =  (2^h )^2 (5^h )^2        ⇒ x  + y  =  ( 5^h )^2                     y^2    =   x  (  x  +  y )              mutiply  by   (1/y^2 )               ( (x/y))^2 + ( (x/y)) −1 =  0          ⇒    (x/y)  =   ((−1 ±(√( 5)))/2)
x=4h=(2h)2y=10hy2=(2h)2(5h)2x+y=(5h)2y2=x(x+y)mutiplyby1y2(xy)2+(xy)1=0xy=1±52
Commented by mathdanisur last updated on 27/Jun/21
thank you Sir cool
thankyouSircool

Leave a Reply

Your email address will not be published. Required fields are marked *