Menu Close

log-5-x-3-log-6-x-14-




Question Number 170958 by cortano1 last updated on 04/Jun/22
      log _5 (x+3)=log _6 (x+14)
log5(x+3)=log6(x+14)
Answered by floor(10²Eta[1]) last updated on 05/Jun/22
log_5 (x+3)=y=log_6 (x+14)  x+3=5^y   x+14=6^y   5^y +11=6^y   y=2⇒5^2 +11=6^2   let′s show that for y>2⇒6^y >5^y +11  let f(y)=6^y −5^y −11  we want: f(y)>0, ∀ y>2  f(2)=0  f′(y)=6^y ln6−5^y ln5  but f′(y)>0, ∀ y>2  ⇒f is increasing on the interval [2,+∞)  since f(2)=0⇒f(y)>0, ∀ y>2  ⇒6^y >5^y +11, ∀ y>2  ⇒y=2 is the only solution to 6^y =5^y +11  ⇒x+3=5^2 ⇒x=22
log5(x+3)=y=log6(x+14)x+3=5yx+14=6y5y+11=6yy=252+11=62letsshowthatfory>26y>5y+11letf(y)=6y5y11wewant:f(y)>0,y>2f(2)=0f(y)=6yln65yln5butf(y)>0,y>2fisincreasingontheinterval[2,+)sincef(2)=0f(y)>0,y>26y>5y+11,y>2y=2istheonlysolutionto6y=5y+11x+3=52x=22

Leave a Reply

Your email address will not be published. Required fields are marked *