Menu Close

log-5-x-9-log-5-3x-2-12-log-5-2x-1-0-




Question Number 156109 by cortano last updated on 08/Oct/21
  log _5 ((√(x−9)))−log _5 (3x^2 −12)−log _5 ((√(2x−1))) ≤ 0
log5(x9)log5(3x212)log5(2x1)0
Answered by yeti123 last updated on 08/Oct/21
(1) ∩ (2) ∩ (3) ∩ (4) ∩ (5) ∩ (6) = 9 < x ≤ 21478
(1)(2)(3)(4)(5)(6)=9<x21478
Answered by yeti123 last updated on 08/Oct/21
log_5 ((√(x−9))) − log_5 (3x^2 −12) − log_5 ((√(2x−1))) ≤ 0  log_5 (((√(x−9))/((3x^2 −12)((√(2x−1)))))) ≤ log_5 (1)  ((√(x−9))/((3x^2 −12)(√(2x−1)))) ≤ 1  ⇒ x = 9                ....(1)        −2 < x <(1/2).....(2)        x ≤ 21478........(3)    log_5 ((√(x−9))) ⇒ (√(x−9 )) > 0 ⇒ x> 9..............(4)  log_5 (3x^2 −12) ⇒ (3x^2 −12) > 0 ⇒ x > 2 ∧ x < −2..........(5)  log_5 ((√(2x−1))) ⇒ (√(2x−1)) > 0 ⇒ x > (1/2)............(6)    (1) ∩ (2) ∩ (3) ∩ (4) ∩ (5) ∩ (6) = (1/2) < x ≤ 21478
log5(x9)log5(3x212)log5(2x1)0log5(x9(3x212)(2x1))log5(1)x9(3x212)2x11x=9.(1)2<x<12..(2)x21478..(3)log5(x9)x9>0x>9..(4)log5(3x212)(3x212)>0x>2x<2.(5)log5(2x1)2x1>0x>12(6)(1)(2)(3)(4)(5)(6)=12<x21478
Commented by cortano last updated on 08/Oct/21
for x=1 is not solution
forx=1isnotsolution
Commented by mr W last updated on 08/Oct/21
why x≤21478? how did you get it?  in fact we have x>9 and for any x>9  0<((√(x−9))/((3x^2 −12)(√(2x−1)))) ≤0.0009 ≤1    so the answer is x∈(9,+∞)
whyx21478?howdidyougetit?infactwehavex>9andforanyx>90<x9(3x212)2x10.00091sotheanswerisx(9,+)
Commented by yeti123 last updated on 08/Oct/21
yes mr. W, I miscalculated. thanks for the correction.
yesmr.W,Imiscalculated.thanksforthecorrection.

Leave a Reply

Your email address will not be published. Required fields are marked *